-
Notifications
You must be signed in to change notification settings - Fork 0
/
video_demo.py
191 lines (146 loc) · 5.56 KB
/
video_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import division
import warnings
from Networks.HR_Net.seg_hrnet import get_seg_model
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
import dataset
import math
from image import *
from utils import *
import logging
import nni
from nni.utils import merge_parameter
from config import return_args, args
warnings.filterwarnings('ignore')
import time
logger = logging.getLogger('mnist_AutoML')
print(args)
img_transform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
tensor_transform = transforms.ToTensor()
def main(args):
model = get_seg_model()
model = nn.DataParallel(model, device_ids=[0])
model = model.cuda()
if args['pre']:
if os.path.isfile(args['pre']):
print("=> loading checkpoint '{}'".format(args['pre']))
checkpoint = torch.load(args['pre'])
model.load_state_dict(checkpoint['state_dict'], strict=False)
args['start_epoch'] = checkpoint['epoch']
args['best_pred'] = checkpoint['best_prec1']
else:
print("=> no checkpoint found at '{}'".format(args['pre']))
fourcc = cv2.VideoWriter_fourcc(*'XVID')
#fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
cap = cv2.VideoCapture(args['video_path'])
ret, frame = cap.read()
print(frame.shape)
'''out video'''
width = frame.shape[1] #output size
height = frame.shape[0] #output size
out = cv2.VideoWriter('./demo.avi', fourcc, 30, (width, height))
while True:
try:
ret, frame = cap.read()
scale_factor = 0.5
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor)
ori_img = frame.copy()
except:
print("test end")
cap.release()
break
frame = frame.copy()
image = tensor_transform(frame)
image = img_transform(image).unsqueeze(0)
with torch.no_grad():
d6 = model(image)
count, pred_kpoint = counting(d6)
point_map = generate_point_map(pred_kpoint)
box_img = generate_bounding_boxes(pred_kpoint, frame)
show_fidt = show_fidt_func(d6.data.cpu().numpy())
#res = np.hstack((ori_img, show_fidt, point_map, box_img))
res1 = np.hstack((ori_img, show_fidt))
res2 = np.hstack((box_img, point_map))
res = np.vstack((res1, res2))
cv2.putText(res, "Count:" + str(count), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imwrite('./demo.jpg', res)
'''write in out_video'''
out.write(res)
print("pred:%.3f" % count)
def counting(input):
input_max = torch.max(input).item()
keep = nn.functional.max_pool2d(input, (3, 3), stride=1, padding=1)
keep = (keep == input).float()
input = keep * input
input[input < 100.0 / 255.0 * torch.max(input)] = 0
input[input > 0] = 1
'''negative sample'''
if input_max<0.1:
input = input * 0
count = int(torch.sum(input).item())
kpoint = input.data.squeeze(0).squeeze(0).cpu().numpy()
return count, kpoint
def generate_point_map(kpoint):
rate = 1
pred_coor = np.nonzero(kpoint)
point_map = np.zeros((int(kpoint.shape[0] * rate), int(kpoint.shape[1] * rate), 3), dtype="uint8") + 255 # 22
# count = len(pred_coor[0])
coord_list = []
for i in range(0, len(pred_coor[0])):
h = int(pred_coor[0][i] * rate)
w = int(pred_coor[1][i] * rate)
coord_list.append([w, h])
cv2.circle(point_map, (w, h), 3, (0, 0, 0), -1)
return point_map
def generate_bounding_boxes(kpoint, Img_data):
'''generate sigma'''
pts = np.array(list(zip(np.nonzero(kpoint)[1], np.nonzero(kpoint)[0])))
leafsize = 2048
if pts.shape[0] > 0: # Check if there is a human presents in the frame
# build kdtree
tree = scipy.spatial.KDTree(pts.copy(), leafsize=leafsize)
distances, locations = tree.query(pts, k=4)
for index, pt in enumerate(pts):
pt2d = np.zeros(kpoint.shape, dtype=np.float32)
pt2d[pt[1], pt[0]] = 1.
if np.sum(kpoint) > 1:
sigma = (distances[index][1] + distances[index][2] + distances[index][3]) * 0.1
else:
sigma = np.average(np.array(kpoint.shape)) / 2. / 2. # case: 1 point
sigma = min(sigma, min(Img_data.shape[0], Img_data.shape[1]) * 0.04)
if sigma < 6:
t = 2
else:
t = 2
Img_data = cv2.rectangle(Img_data, (int(pt[0] - sigma), int(pt[1] - sigma)),
(int(pt[0] + sigma), int(pt[1] + sigma)), (0, 255, 0), t)
return Img_data
def show_fidt_func(input):
input[input < 0] = 0
input = input[0][0]
fidt_map1 = input
fidt_map1 = fidt_map1 / np.max(fidt_map1) * 255
fidt_map1 = fidt_map1.astype(np.uint8)
fidt_map1 = cv2.applyColorMap(fidt_map1, 2)
return fidt_map1
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
tuner_params = nni.get_next_parameter()
logger.debug(tuner_params)
params = vars(merge_parameter(return_args, tuner_params))
print(params)
main(params)