PyTorch implementation of AAMAS'20 paper-Trajectory-User Linking with Attentive Recurrent Network
The sample data to evaluate our model can be found in the data folder, which contains 200+ users and ready for directly used.
- Python 2.7
- Pytorch 0.4.1
cPickle is used in the project to store the preprocessed data and parameters.
- /codes
- main.py
- model.py # define models
- masked_cross_entropy.py #calculate entropy
- train.py # define tools for train the model
- /data
- /data # preprocessed foursquare sample data (pickle file)
- /docs # paper and presentation file
- /resutls # the default save path when training the model
Train a new model:
python main.py
Other parameters (refer to main.py):
- for training:
- learning_rate, lr_step, lr_decay, L2, clip, epoch_max, dropout_p
- model definition:
- loc_emb_size, uid_emb_size, tim_emb_size, hidden_size, rnn_type, attn_type
- strategies_type: AVE-sdot,AVE-dot,MAX-sdot,MAX-dot
More specific data and data processing methods will be given later