Fork of https://github.com/ducha-aiki/whale-identification-2018
Heavily based on https://github.com/radekosmulski/whale
./build.sh
# ./publish.sh # Publish to Dockerhub (requires authentication)
- Clone this repository. cd into data. Download competition data by running
kaggle competitions download -c humpback-whale-identification
. You might need to agree to competition rules on competition website if you get a 403. - Create the train directory and extract files via running
mkdir train && unzip train.zip -d train
- Do the same for test:
mkdir test && unzip test.zip -d test
- Go back to top-level directory
cd ../
- Extract boxes
python apply_bboxes.py
docker pull wildme/kaggle7:latest
# Map the local ./data folder into the /data/ folder inside the container (which is symlinked from /opt/whale/data/)
NV_GPU=1,3 nvidia-docker container run -it --rm --name kaggle7 -v $(pwd)/data/:/data/ --ipc=host wildme/kaggle7:latest
NV_GPU=1,3 nvidia-docker container run -it --rm --name kaggle7 -v $(pwd)/data/:/data/ --ipc=host --entrypoint="/bin/bash" wildme/kaggle7:latest