Skip to content

neosr is a framework for training real-world single-image super-resolution networks.

License

Notifications You must be signed in to change notification settings

Corpsecreate/neosr

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

neosr

neosr is a framework for training real-world single-image super-resolution networks. wiki.


Join our Discord
news 05.09.2024 - Release Real-PLKSR network. wiki
05.08.2024 - Release Nomos-v2 dataset. For more details, see datasets

🀝 support me

Tip

Consider supporting me on KoFi β˜• or Patreon

πŸ’» installation

Requires Python 3.11 and CUDA =>11.8. Install latest Pytorch (=>2.1) and TorchVision (required).

Clone the repository:

git clone https://github.com/muslll/neosr
cd neosr

Then install other dependencies via pip:

pip install -e .

Alternatively, use poetry (recommended on linux):

poetry install
poetry add torch@latest torchvision@latest

Note: You must use poetry shell to enter the env after installation.

(optional) If you want to convert your models (convert.py), you need the following dependencies:

pip install onnx onnxruntime-gpu onnxconverter-common onnxsim

You can also install using poetry (recommended on linux):

poetry add onnx onnxruntime-gpu onnxconverter-common onnxsim

Please read the wiki tutorial for converting your models.

quick start

Start training by running:

python train.py -opt options.yml

Where options.yml is a configuration file. Templates can be found in options.

Tip

Please read the wiki Configuration Walkthrough for an explanation of each option.

features

Supported archs:

arch option
Real-ESRGAN esrgan
SRVGGNetCompact compact
SwinIR swinir_small, swinir_medium
HAT hat_s, hat_m, hat_l
OmniSR omnisr
SRFormer srformer_light, srformer_medium
DAT dat_small, dat_medium, dat_2
DITN ditn
DCTLSA dctlsa
SPAN span
Real-CUGAN cugan
CRAFT craft
SAFMN safmn, safmn_l
RGT rgt, rgt_s
ATD atd, atd_light
PLKSR plksr, plksr_tiny
RealPLKSR realplksr, realplksr_s
DRCT drct, drct_l, drct_s
EFEN efen

Note

For all arch-specific parameters, read the wiki.

Under Testing

arch option

Supported Discriminators:

net option
U-Net w/ SN unet
A2-FPN w/ SN a2fpn
PatchGAN w/ SN patchgan

Supported Optimizers:

optimizer option
Adam Adam or adam
AdamW AdamW or adamw
NAdam NAdam or nadam
Lion Lion or lion
LAMB Lamb or lamb
Adan Adan or adan

Supported losses:

loss option
L1 Loss L1Loss, l1
L2 Loss MSELoss, l2
Huber Loss HuberLoss, huber
CHC (Clipped Huber with Cosine Similarity Loss) chc, chc_l2
Perceptual Loss perceptual_opt, PerceptualLoss
GAN gan_opt, GANLoss, MultiScaleGANLoss
YCbCr Color Loss (bt601) color_opt, colorloss
Luma Loss (CIE L*) luma_opt lumaloss
MS-SSIM mssim_opt mssim
LDL Loss ldl_opt
Focal Frequency ff_opt, focalfrequencyloss
DISTS dists_opt, dists
Wavelet Guided wavelet_guided
Gradient-Weighted gw_opt, gw_loss

Supported Augmentations:

augmentation option
Rotation use_rot
Flip use_hflip
MixUp mixup
CutMix cutmix
ResizeMix resizemix
CutBlur cutblur

Supported models:

model description option
Default Base model, supports both Generator and Discriminator default
OTF Builds on top of default, adding Real-ESRGAN on-the-fly degradations otf

Supported dataset loaders:

loader option
Paired datasets paired
Single datasets (for inference, no GT required) single
Real-ESRGAN on-the-fly degradation otf

πŸ“Έ datasets

As part of neosr, I have released a dataset series called Nomos. The purpose of these datasets is to distill only the best images from the academic and community datasets. A total of 14 datasets were manually reviewed and processed, including: Adobe-MIT-5k, RAISE, LSDIR, LIU4k-v2, KONIQ-10k, Nikon LL RAW, DIV8k, FFHQ, Flickr2k, ModernAnimation1080_v2, Rawsamples, SignatureEdits, Hasselblad raw samples and Unsplash.

  • Nomos-v2 (recommended): contains 6000 images, multipurpose. Data distribution:
pie
  title Nomos-v2 distribution
  "Animal / fur" : 439
  "Interiors" : 280
  "Exteriors / misc" : 696
  "Architecture / geometric" : 1470
  "Drawing / painting / anime" : 1076
  "Humans" : 598
  "Mountain / Rocks" : 317
  "Text" : 102
  "Textures" : 439
  "Vegetation" : 574
Loading
  • nomos_uni (recommended for lightweight networks): contains 2989 images, multipurpose. Meant to be used on lightweight networks (<800k parameters).
  • hfa2k: contains 2568 anime images.
dataset download sha256
nomosv2 (3GB) sha256
nomosv2.lmdb (3GB) sha256
nomosv2_lq_4x (187MB) sha256
nomosv2_lq_4x.lmdb (187MB) sha256
nomos_uni (1.3GB) sha256
nomos_uni.lmdb (1.3GB) sha256
nomos_uni_lq_4x sha256
nomos_uni_lq_4x.lmdb sha256
hfa2k sha256

community datasets

Datasets made by the upscaling community. More info can be found in the Enhance Everything discord

  • FaceUp: Curated version of FFHQ
  • SSDIR: Curated version of LSDIR.
  • kim's 8k Dataset V2: Video Game Dataset
dataset download
@Kim2091 8k Dataset V2 GDrive (33.5GB)
@Phhofm FaceUp GDrive (4GB)
@Phhofm SSDIR Gdrive (4.5GB)

resources

πŸ“„ license and acknowledgements

Released under the Apache license. All licenses listed on license/readme. This code was originally based on BasicSR.

Thanks to victorca25/traiNNer, styler00dollar/Colab-traiNNer and timm for providing helpful insights into some problems.

Thanks to contributors @Phhofm, @Sirosky, @Kim2091, @terrainer, @Corpsecreate and @umzi2 for helping with tests and bug reporting.

About

neosr is a framework for training real-world single-image super-resolution networks.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%