Skip to content

Commit

Permalink
BUG: Fix behavior of argmax and argmin with inf (pandas-dev#16449)
Browse files Browse the repository at this point in the history
Closes pandas-dev#13595

The implementations of `nanargmin` and `nanargmax` in `nanops` were
forcing the `_get_values` utility function to always mask out infinite
values. For example, in `nanargmax`,

    >>> nanops._get_values(np.array([1, np.nan, np.inf]), True,
    isfinite=True, fill_value_typ='-inf')

    (array([  1., -inf, -inf]),
     array([False,  True,  True], dtype=bool),
     dtype('float64'),
     numpy.float64)

The first element of the result tuple (the masked version of the
values array) is used for actually finding the max or min argument. As
a result, infinite values could never be correctly recognized as the
maximum or minimum values in an array.

This also affects the behavior of `Series.idxmax` with string data (or
the `object` dtype generally). Previously, `nanargmax` would always
attempt to coerce its input to float, even when there were no missing
values. Now, it will not, and so will work correctly in the particular
case of a `Series` of strings with no missing values. However, because
it's difficult to ensure that `nanargmin` and `nanargmax` will behave
consistently for arbitrary `Series` of `object` with and without
missing values, these functions are now explicitly disallowed for
`object`.
  • Loading branch information
DGrady authored and Daniel Grady committed Aug 12, 2017
1 parent 06850a1 commit 12ba7a7
Show file tree
Hide file tree
Showing 4 changed files with 86 additions and 5 deletions.
25 changes: 25 additions & 0 deletions doc/source/whatsnew/v0.21.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,30 @@ Dtype Conversions
- Inconsistent behavior in ``.where()`` with datetimelikes which would raise rather than coerce to ``object`` (:issue:`16402`)
- Bug in assignment against ``int64`` data with ``np.ndarray`` with ``float64`` dtype may keep ``int64`` dtype (:issue:`14001`)

Dropping argmin/argmax support for arbitrary dtypes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:func:`Series.argmin` and :func:`Series.argmax` will now raise a ``TypeError`` when used with ``object`` dtypes. Previously, these functions would attempt to coerce their arguments to floats, which usually led to a ``ValueError``. Now, ``object`` dtypes are explicitly disallowed with ``argmax`` and related functions. For example, the old behavior produced a somewhat confusing message:

.. code-block:: ipython

In [1]: s = pd.Series(['foo', 'bar'])

In [2]: s.argmax()
...
ValueError: could not convert string to float: 'bar'

This has now changed to

.. code-block:: ipython

In [1]: s = pd.Series(['foo', 'bar'])

In [2]: s.argmax()
...
TypeError: reduction operation 'argmax' not allowed for this dtype


.. _whatsnew_0210.api.na_changes:

NA naming Changes
Expand Down Expand Up @@ -369,6 +393,7 @@ Reshaping
- Fixes regression from 0.20, :func:`Series.aggregate` and :func:`DataFrame.aggregate` allow dictionaries as return values again (:issue:`16741`)
- Fixes dtype of result with integer dtype input, from :func:`pivot_table` when called with ``margins=True`` (:issue:`17013`)
- Bug in :func:`crosstab` where passing two ``Series`` with the same name raised a ``KeyError`` (:issue:`13279`)
- :func:`Series.argmin`, :func:`Series.argmax`, and their counterparts on ``DataFrame`` and groupby objects work correctly with floating point data that contains infinite values (:issue:`13595`).

Numeric
^^^^^^^
Expand Down
8 changes: 4 additions & 4 deletions pandas/core/nanops.py
Original file line number Diff line number Diff line change
Expand Up @@ -486,23 +486,23 @@ def reduction(values, axis=None, skipna=True):
nanmax = _nanminmax('max', fill_value_typ='-inf')


@disallow('O')
def nanargmax(values, axis=None, skipna=True):
"""
Returns -1 in the NA case
"""
values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='-inf',
isfinite=True)
values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='-inf')
result = values.argmax(axis)
result = _maybe_arg_null_out(result, axis, mask, skipna)
return result


@disallow('O')
def nanargmin(values, axis=None, skipna=True):
"""
Returns -1 in the NA case
"""
values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='+inf',
isfinite=True)
values, mask, dtype, _ = _get_values(values, skipna, fill_value_typ='+inf')
result = values.argmin(axis)
result = _maybe_arg_null_out(result, axis, mask, skipna)
return result
Expand Down
3 changes: 2 additions & 1 deletion pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -2339,7 +2339,8 @@ def test_non_cython_api(self):
assert_frame_equal(result, expected)

# idxmax
expected = DataFrame([[0], [nan]], columns=['B'], index=[1, 3])
expected = DataFrame([[0.0], [nan]], columns=['B'],
index=[1, 3])
expected.index.name = 'A'
result = g.idxmax()
assert_frame_equal(result, expected)
Expand Down
55 changes: 55 additions & 0 deletions pandas/tests/series/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -1857,3 +1857,58 @@ def test_op_duplicate_index(self):
result = s1 + s2
expected = pd.Series([11, 12, np.nan], index=[1, 1, 2])
assert_series_equal(result, expected)

def test_argminmax(self):
# Series.argmin, Series.argmax are aliased to Series.idxmin,
# Series.idxmax

# Expected behavior for empty Series
s = pd.Series([])

with pytest.raises(ValueError):
s.argmin()
with pytest.raises(ValueError):
s.argmin(skipna=False)
with pytest.raises(ValueError):
s.argmax()
with pytest.raises(ValueError):
s.argmax(skipna=False)

# For numeric data with NA and Inf (GH #13595)
s = pd.Series([0, -np.inf, np.inf, np.nan])

assert s.argmin() == 1
assert np.isnan(s.argmin(skipna=False))

assert s.argmax() == 2
assert np.isnan(s.argmax(skipna=False))

# Using old-style behavior that treats floating point nan, -inf, and
# +inf as missing
s = pd.Series([0, -np.inf, np.inf, np.nan])

with pd.option_context('mode.use_inf_as_na', True):
assert s.argmin() == 0
assert np.isnan(s.argmin(skipna=False))
assert s.argmax() == 0
np.isnan(s.argmax(skipna=False))

# For strings (or any Series with dtype 'O')
s = pd.Series(['foo', 'bar', 'baz'])
with pytest.raises(TypeError):
s.argmin()
with pytest.raises(TypeError):
s.argmax()

s = pd.Series([(1,), (2,)])
with pytest.raises(TypeError):
s.argmin()
with pytest.raises(TypeError):
s.argmax()

# For mixed data types
s = pd.Series(['foo', 'foo', 'bar', 'bar', None, np.nan, 'baz'])
with pytest.raises(TypeError):
s.argmin()
with pytest.raises(TypeError):
s.argmax()

0 comments on commit 12ba7a7

Please sign in to comment.