Skip to content

DoubleGremlin181/RubiksCubeRL

Repository files navigation

RubiksCubeRL

Solving Twisty Puzzles with Reinforcement Learning(Parallel Q-Learning)


Python Version GitHub OS

Citation

@article{hukmani2021solving,
  title={Solving Twisty Puzzles Using Parallel Q-learning.},
  author={Hukmani, Kavish and Kolekar, Sucheta and Vobugari, Sreekumar},
  journal={Engineering Letters},
  volume={29},
  number={4},
  year={2021}
}

Instructions

  • Install requirements
  • Create a Q-Table by running pql.py on Linux or pql-windows.py on Windows.
  • Download and unzip the WCA results TSV dataset
  • Run scrambles_extractor.py to extract the scrambles to a csv
  • Run validator.py to track the performance of your agent on official WCA scrambles
  • (Optional) Solve any scramble via solver.py

Results

2x2 Pocket Rubiks Cube

Size of validation set Average reward Success rate Average number of moves Method Training Size
10000 -86.1917 49.89 136.5806 lbl 2000000
10000 -31.9635 66.9 99.5325 none 2000000
10000 -188.8264 18.48 207.4912 ortega 2000000
10000 32.4786 85.26 53.634 lbl 3000000
10000 79.5309 99.8 21.2671 none 3000000
10000 -54.1187 53.18 127.4008 ortega 3000000
10000 77.5661 98.12 21.5351 lbl 5000000
10000 83.681 100 17.319 none 5000000
10000 31.9869 84.53 53.3884 ortega 5000000
10000 84.2557 99.77 16.512 lbl 7500000
10000 85.1919 100 15.8081 none 7500000
10000 81.5391 99.09 18.5418 ortega 7500000
10000 85.5475 100 15.4525 lbl 10000000
10000 85.5908 100 15.4092 none 10000000
10000 85.2556 99.95 15.6939 ortega 10000000

Pyraminx

Size of validation set Average reward Success rate Average number of moves Method Training Size
10000 -221.2995 8.54 229.9249 lbl 500000
10000 -142.075 32.68 175.0818 none 500000
10000 -235.6532 4.25 239.9457 lbl 600000
10000 15.0487 80.6 66.3573 none 600000
10000 -153.2174 28.78 182.2852 lbl 700000
10000 73.6991 97.52 24.7961 none 700000
10000 -182.2324 20.06 202.493 lbl 800000
10000 82.0213 99.62 18.5949 none 800000
10000 -240.883 2.68 243.5898 lbl 900000
10000 84.6026 99.97 16.3671 none 900000
10000 -122.8171 37.63 160.8234 lbl 1000000
10000 85.615 100 15.385 none 1000000
10000 -39.7088 62.08 102.4096 lbl 1500000
10000 87.6315 100 13.3685 none 1500000
10000 51.072 88.77 38.5857 lbl 2500000
10000 89.3179 100 11.6821 none 2500000

Skewb

Size of validation set Average reward Success rate Average number of moves Method Training Size
10000 -72.3876 54.91 127.8467 none 2000000
10000 -222.4332 8.25 230.7657 sarah 2000000
10000 81.9239 99.88 18.9549 none 3000000
10000 -125.7149 37.21 163.297 sarah 3000000
10000 86.4634 100 14.5366 none 5000000
10000 83.4465 99.18 16.7253 sarah 5000000
10000 88.1116 100 12.8884 none 7500000
10000 87.7215 99.89 13.1674 sarah 7500000
10000 88.7571 100 12.2429 none 10000000
10000 88.712 100 12.288 sarah 10000000

About

Solving Twisty Puzzles with Reinforcement Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages