Skip to content

Commit

Permalink
Rollup merge of rust-lang#68914 - nnethercote:speed-up-SipHasher128, …
Browse files Browse the repository at this point in the history
…r=michaelwoerister

Speed up `SipHasher128`.

The current code in `SipHasher128::short_write` is inefficient. It uses
`u8to64_le` (which is complex and slow) to extract just the right number of
bytes of the input into a u64 and pad the result with zeroes. It then
left-shifts that value in order to bitwise-OR it with `self.tail`.

For example, imagine we have a u32 input `0xIIHH_GGFF` and only need three bytes
to fill up `self.tail`. The current code uses `u8to64_le` to construct
`0x0000_0000_00HH_GGFF`, which is just `0xIIHH_GGFF` with the `0xII` removed and
zero-extended to a u64. The code then left-shifts that value by five bytes --
discarding the `0x00` byte that replaced the `0xII` byte! -- to give
`0xHHGG_FF00_0000_0000`. It then then ORs that value with `self.tail`.

There's a much simpler way to do it: zero-extend to u64 first, then left shift.
E.g. `0xIIHH_GGFF` is zero-extended to `0x0000_0000_IIHH_GGFF`, and then
left-shifted to `0xHHGG_FF00_0000_0000`. We don't have to take time to exclude
the unneeded `0xII` byte, because it just gets shifted out anyway! It also avoids
multiple occurrences of `unsafe`.

There's a similar story with the setting of `self.tail` at the method's end.
The current code uses `u8to64_le` to extract the remaining part of the input,
but the same effect can be achieved more quickly with a right shift on the
zero-extended input.

This commit changes `SipHasher128` to use the simpler shift-based approach. The
code is also smaller, which means that `short_write` is now inlined where
previously it wasn't, which makes things faster again. This gives big
speed-ups for all incremental builds, especially "baseline" incremental
builds.

r? @michaelwoerister
  • Loading branch information
Dylan-DPC authored Feb 12, 2020
2 parents 79ebf53 + 9aea154 commit f2d829c
Showing 1 changed file with 84 additions and 80 deletions.
164 changes: 84 additions & 80 deletions src/librustc_data_structures/sip128.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ use std::cmp;
use std::hash::Hasher;
use std::mem;
use std::ptr;
use std::slice;

#[cfg(test)]
mod tests;
Expand Down Expand Up @@ -52,46 +51,17 @@ macro_rules! compress {
}};
}

/// Loads an integer of the desired type from a byte stream, in LE order. Uses
/// `copy_nonoverlapping` to let the compiler generate the most efficient way
/// to load it from a possibly unaligned address.
///
/// Unsafe because: unchecked indexing at i..i+size_of(int_ty)
macro_rules! load_int_le {
($buf:expr, $i:expr, $int_ty:ident) => {{
debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len());
let mut data = 0 as $int_ty;
ptr::copy_nonoverlapping(
$buf.get_unchecked($i),
&mut data as *mut _ as *mut u8,
mem::size_of::<$int_ty>(),
);
data.to_le()
}};
}

/// Loads an u64 using up to 7 bytes of a byte slice.
///
/// Unsafe because: unchecked indexing at start..start+len
/// Loads up to 8 bytes from a byte-slice into a little-endian u64.
#[inline]
unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
debug_assert!(len < 8);
let mut i = 0; // current byte index (from LSB) in the output u64
let mut out = 0;
if i + 3 < len {
out = u64::from(load_int_le!(buf, start + i, u32));
i += 4;
}
if i + 1 < len {
out |= u64::from(load_int_le!(buf, start + i, u16)) << (i * 8);
i += 2
}
if i < len {
out |= u64::from(*buf.get_unchecked(start + i)) << (i * 8);
i += 1;
fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 {
assert!(len <= 8 && start + len <= buf.len());

let mut out = 0u64;
unsafe {
let out_ptr = &mut out as *mut _ as *mut u8;
ptr::copy_nonoverlapping(buf.as_ptr().offset(start as isize), out_ptr, len);
}
debug_assert_eq!(i, len);
out
out.to_le()
}

impl SipHasher128 {
Expand Down Expand Up @@ -122,42 +92,76 @@ impl SipHasher128 {
self.state.v1 ^= 0xee;
}

// Specialized write function that is only valid for buffers with len <= 8.
// It's used to force inlining of write_u8 and write_usize, those would normally be inlined
// except for composite types (that includes slices and str hashing because of delimiter).
// Without this extra push the compiler is very reluctant to inline delimiter writes,
// degrading performance substantially for the most common use cases.
// A specialized write function for values with size <= 8.
//
// The hashing of multi-byte integers depends on endianness. E.g.:
// - little-endian: `write_u32(0xDDCCBBAA)` == `write([0xAA, 0xBB, 0xCC, 0xDD])`
// - big-endian: `write_u32(0xDDCCBBAA)` == `write([0xDD, 0xCC, 0xBB, 0xAA])`
//
// This function does the right thing for little-endian hardware. On
// big-endian hardware `x` must be byte-swapped first to give the right
// behaviour. After any byte-swapping, the input must be zero-extended to
// 64-bits. The caller is responsible for the byte-swapping and
// zero-extension.
#[inline]
fn short_write(&mut self, msg: &[u8]) {
debug_assert!(msg.len() <= 8);
let length = msg.len();
self.length += length;
fn short_write<T>(&mut self, _x: T, x: u64) {
let size = mem::size_of::<T>();
self.length += size;

// The original number must be zero-extended, not sign-extended.
debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true });

// The number of bytes needed to fill `self.tail`.
let needed = 8 - self.ntail;
let fill = cmp::min(length, needed);
if fill == 8 {
self.tail = unsafe { load_int_le!(msg, 0, u64) };
} else {
self.tail |= unsafe { u8to64_le(msg, 0, fill) } << (8 * self.ntail);
if length < needed {
self.ntail += length;
return;
}

// SipHash parses the input stream as 8-byte little-endian integers.
// Inputs are put into `self.tail` until 8 bytes of data have been
// collected, and then that word is processed.
//
// For example, imagine that `self.tail` is 0x0000_00EE_DDCC_BBAA,
// `self.ntail` is 5 (because 5 bytes have been put into `self.tail`),
// and `needed` is therefore 3.
//
// - Scenario 1, `self.write_u8(0xFF)`: we have already zero-extended
// the input to 0x0000_0000_0000_00FF. We now left-shift it five
// bytes, giving 0x0000_FF00_0000_0000. We then bitwise-OR that value
// into `self.tail`, resulting in 0x0000_FFEE_DDCC_BBAA.
// (Zero-extension of the original input is critical in this scenario
// because we don't want the high two bytes of `self.tail` to be
// touched by the bitwise-OR.) `self.tail` is not yet full, so we
// return early, after updating `self.ntail` to 6.
//
// - Scenario 2, `self.write_u32(0xIIHH_GGFF)`: we have already
// zero-extended the input to 0x0000_0000_IIHH_GGFF. We now
// left-shift it five bytes, giving 0xHHGG_FF00_0000_0000. We then
// bitwise-OR that value into `self.tail`, resulting in
// 0xHHGG_FFEE_DDCC_BBAA. `self.tail` is now full, and we can use it
// to update `self.state`. (As mentioned above, this assumes a
// little-endian machine; on a big-endian machine we would have
// byte-swapped 0xIIHH_GGFF in the caller, giving 0xFFGG_HHII, and we
// would then end up bitwise-ORing 0xGGHH_II00_0000_0000 into
// `self.tail`).
//
self.tail |= x << (8 * self.ntail);
if size < needed {
self.ntail += size;
return;
}

// `self.tail` is full, process it.
self.state.v3 ^= self.tail;
Sip24Rounds::c_rounds(&mut self.state);
self.state.v0 ^= self.tail;

// Buffered tail is now flushed, process new input.
self.ntail = length - needed;
self.tail = unsafe { u8to64_le(msg, needed, self.ntail) };
}

#[inline(always)]
fn short_write_gen<T>(&mut self, x: T) {
let bytes =
unsafe { slice::from_raw_parts(&x as *const T as *const u8, mem::size_of::<T>()) };
self.short_write(bytes);
// Continuing scenario 2: we have one byte left over from the input. We
// set `self.ntail` to 1 and `self.tail` to `0x0000_0000_IIHH_GGFF >>
// 8*3`, which is 0x0000_0000_0000_00II. (Or on a big-endian machine
// the prior byte-swapping would leave us with 0x0000_0000_0000_00FF.)
//
// The `if` is needed to avoid shifting by 64 bits, which Rust
// complains about.
self.ntail = size - needed;
self.tail = if needed < 8 { x >> (8 * needed) } else { 0 };
}

#[inline]
Expand All @@ -182,52 +186,52 @@ impl SipHasher128 {
impl Hasher for SipHasher128 {
#[inline]
fn write_u8(&mut self, i: u8) {
self.short_write_gen(i);
self.short_write(i, i as u64);
}

#[inline]
fn write_u16(&mut self, i: u16) {
self.short_write_gen(i);
self.short_write(i, i.to_le() as u64);
}

#[inline]
fn write_u32(&mut self, i: u32) {
self.short_write_gen(i);
self.short_write(i, i.to_le() as u64);
}

#[inline]
fn write_u64(&mut self, i: u64) {
self.short_write_gen(i);
self.short_write(i, i.to_le() as u64);
}

#[inline]
fn write_usize(&mut self, i: usize) {
self.short_write_gen(i);
self.short_write(i, i.to_le() as u64);
}

#[inline]
fn write_i8(&mut self, i: i8) {
self.short_write_gen(i);
self.short_write(i, i as u8 as u64);
}

#[inline]
fn write_i16(&mut self, i: i16) {
self.short_write_gen(i);
self.short_write(i, (i as u16).to_le() as u64);
}

#[inline]
fn write_i32(&mut self, i: i32) {
self.short_write_gen(i);
self.short_write(i, (i as u32).to_le() as u64);
}

#[inline]
fn write_i64(&mut self, i: i64) {
self.short_write_gen(i);
self.short_write(i, (i as u64).to_le() as u64);
}

#[inline]
fn write_isize(&mut self, i: isize) {
self.short_write_gen(i);
self.short_write(i, (i as usize).to_le() as u64);
}

#[inline]
Expand All @@ -239,7 +243,7 @@ impl Hasher for SipHasher128 {

if self.ntail != 0 {
needed = 8 - self.ntail;
self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail);
self.tail |= u8to64_le(msg, 0, cmp::min(length, needed)) << (8 * self.ntail);
if length < needed {
self.ntail += length;
return;
Expand All @@ -257,7 +261,7 @@ impl Hasher for SipHasher128 {

let mut i = needed;
while i < len - left {
let mi = unsafe { load_int_le!(msg, i, u64) };
let mi = u8to64_le(msg, i, 8);

self.state.v3 ^= mi;
Sip24Rounds::c_rounds(&mut self.state);
Expand All @@ -266,7 +270,7 @@ impl Hasher for SipHasher128 {
i += 8;
}

self.tail = unsafe { u8to64_le(msg, i, left) };
self.tail = u8to64_le(msg, i, left);
self.ntail = left;
}

Expand Down

0 comments on commit f2d829c

Please sign in to comment.