- arXiv
-
CVPR 2018
- DenseASPP for Semantic Segmentation in StreetScenes
- Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation
- Recurrent Scene Parsing with Perspective Understanding in the Loop
- Learning a Discriminative Feature Network for Semantic Segmentation
- Context Encoding for Semantic Segmentation
- Dynamic-structured Semantic Propagation Network
- In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
- Error Correction for Dense Semantic Image Labeling
-
ECCV 2018
- Multi-Scale Context Intertwining for Semantic Segmentation
- Unified Perceptual Parsing for Scene Understanding
- ExFuse: Enhancing Feature Fusion for Semantic Segmentation
- BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation
- ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation
- PSANet: Point-wise Spatial Attention Network for Scene Parsing
- ICNet for Real-Time Semantic Segmentation on High-Resolution Images
- Adaptive Affinity Fields for Semantic Segmentation
- Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
-
Other 18'conferences
- RelationNet: Learning Deep-Aligned Representation for Semantic Image Segmentation [ICPR]
- High Resolution Feature Recovering for Accelerating Urban Scene Parsing [IJCAI]
- Mix-and-Match Tuning for Self-Supervised Semantic Segmentation [AAAI]
- Spatial As Deep: Spatial CNN for Traffic Scene Understanding Xingang [AAAI]
- A Probabilistic U-Net for Segmentation of Ambiguous Images [NIPS]
- DifNet: Semantic Segmentation by Diffusion Networks [NIPS]
- Searching for Efficient Multi-Scale Architectures for Dense Image Prediction [NIPS]
-
ArXiv
- Improving Semantic Segmentation via Video Propagation and Label Relaxation
- Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
- Graph-Based Global Reasoning Networks
- ShelfNet for Real-time Semantic Segmentation, Multi-path segmentation network
- CCNet: Criss-Cross Attention for Semantic Segmentation
- Dual Attention Network for Scene Segmentation
- Decoupled Spatial Neural Attention for Weakly Supervised Semantic Segmentation
- Locally Adaptive Learning Loss for Semantic Image Segmentation
- RTSEG: REAL-TIME SEMANTIC SEGMENTATION COMPARATIVE STUDY
- OCNet: Object Context Network for Scene Parsing
- CGNet: A Light-weight Context Guided Network for Semantic Segmentation
- Tree-structured Kronecker Convolutional Network for Semantic Segmentation
-
CVPR 2017
- Convolutional RandomWalk Networks for Semantic Image Segmentation
- Dilated Residual Networks
- Learning Adaptive Receptive Fields for Deep Image Parsing Network
- Loss Max-Pooling for Semantic Image Segmentation
- Semantic Segmentation via Structured Patch Prediction, Context CRF and Guidance CRF
- Pyramid Scene Parsing Network
- Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes
- Refinenet: Multi-path refinement networks for high-resolution semantic segmentation
-
ICCV 2017
- Deep Dual Learning for Semantic Image Segmentation
- Semi Supervised Semantic Segmentation Using Generative Adversarial Network
- Scale-adaptive Convolutions for Scene Parsing
- Predicting Deeper into the Future of Semantic Segmentation
- Segmentation-Aware Convolutional Networks Using Local Attention Mask
- Dense and Low-Rank Gaussian CRFs Using Deep Embeddings Siddhartha
- FoveaNet: Perspective-aware Urban Scene Parsing
-
Other 17'conferences
-
ArXiv
-
CVPR 2016
-
ECCV 2016
-
Other 16'conferences
-
ArXiv
-
CVPR 2015
-
ICCV 2015
-
Other 15'conferences
-
ArXiv
- Simultaneous Detection and Segmentation [ECCV2014]
- Nonparametric Scene Parsing via Label Transfer [TPAMI2011][Project]
- https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
- https://github.com/meetshah1995/pytorch-semseg [PyTorch]
- Learning to Segment Object Candidates
- Recurrent Instance Segmentation [ECCV2016]
- Instance-aware Semantic Segmentation via Multi-task Network Cascades
- Learning to Refine Object Segments
- Fully Convolutional Instance-aware Semantic Segmentation
- Mask R-CNN
+ https://github.com/shelhamer/clockwork-fcn
+ https://github.com/JingchunCheng/Seg-with-SPN
- https://github.com/cvlab-epfl/densecrf
- http://vladlen.info/publications/efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials/
- http://www.philkr.net/home/densecrf
- http://graphics.stanford.edu/projects/densecrf/
- https://github.com/amiltonwong/segmentation/blob/master/segmentation.ipynb
- https://github.com/jliemansifry/super-simple-semantic-segmentation
- http://users.cecs.anu.edu.au/~jdomke/JGMT/
- https://www.quora.com/How-can-one-train-and-test-conditional-random-field-CRF-in-Python-on-our-own-training-testing-dataset
- https://github.com/tpeng/python-crfsuite
- https://github.com/chokkan/crfsuite
- https://sites.google.com/site/zeppethefake/semantic-segmentation-crf-baseline
- https://github.com/lucasb-eyer/pydensecrf
- Stanford Background Dataset
- Sift Flow Dataset
- Barcelona Dataset
- Microsoft COCO dataset
- MSRC Dataset
- LITS Liver Tumor Segmentation Dataset
- KITTI
- Pascal Context
- Data from Games dataset
- Human parsing dataset
- Mapillary Vistas Dataset
- Microsoft AirSim
- MIT Scene Parsing Benchmark
- COCO 2017 Stuff Segmentation Challenge
- ADE20K Dataset
- INRIA Annotations for Graz-02
- Daimler dataset
- ISBI Challenge: Segmentation of neuronal structures in EM stacks
- INRIA Annotations for Graz-02 (IG02)
- Pratheepan Dataset
- Clothing Co-Parsing (CCP) Dataset
- Inria Aerial Image
- https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html
- http://www.andrewjanowczyk.com/efficient-pixel-wise-deep-learning-on-large-images/
- https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/
- https://github.com/NVIDIA/DIGITS/tree/master/examples/binary-segmentation
- https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation