This is a Python client for the Unstructured API.
Please refer to the Unstructured docs for a full guide to using the client.
pip install unstructured-client
import os
import unstructured_client
from unstructured_client.models import operations, shared
client = unstructured_client.UnstructuredClient(
api_key_auth=os.getenv("UNSTRUCTURED_API_KEY"),
server_url=os.getenv("UNSTRUCTURED_API_URL"),
)
filename = "PATH_TO_FILE"
with open(filename, "rb") as f:
data = f.read()
req = operations.PartitionRequest(
partition_parameters=shared.PartitionParameters(
files=shared.Files(
content=data,
file_name=filename,
),
# --- Other partition parameters ---
strategy=shared.Strategy.AUTO,
languages=['eng'],
),
)
try:
res = client.general.partition(request=req)
print(res.elements[0])
except Exception as e:
print(e)
Refer to the API parameters page for all available parameters.
See page splitting for more details.
In order to speed up processing of large PDF files, the client splits up PDFs into smaller files, sends these to the API concurrently, and recombines the results. split_pdf_page
can be set to False
to disable this.
The amount of workers utilized for splitting PDFs is dictated by the split_pdf_concurrency_level
parameter, with a default of 5 and a maximum of 15 to keep resource usage and costs in check. The splitting process leverages asyncio
to manage concurrency effectively.
The size of each batch of pages (ranging from 2 to 20) is internally determined based on the concurrency level and the total number of pages in the document. Because the splitting process uses asyncio
the client can encouter event loop issues if it is nested in another async runner, like running in a gevent
spawned task. Instead, this is safe to run in multiprocessing workers (e.g., using multiprocessing.Pool
with fork
context).
Example:
req = shared.PartitionParameters(
files=files,
strategy="fast",
languages=["eng"],
split_pdf_concurrency_level=8
)
When split_pdf_page=True
(the default), you can optionally specify a page range to send only a portion of your PDF to be extracted. The parameter takes a list of two integers to specify the range, inclusive. A ValueError is thrown if the page range is invalid.
Example:
req = shared.PartitionParameters(
files=files,
strategy="fast",
languages=["eng"],
split_pdf_page_range=[10,15],
)
Some of the endpoints in this SDK support retries. If you use the SDK without any configuration, it will fall back to the default retry strategy provided by the API. However, the default retry strategy can be overridden on a per-operation basis, or across the entire SDK.
To change the default retry strategy for a single API call, simply provide a RetryConfig
object to the call:
import unstructured_client
from unstructured_client.models import operations, shared
from unstructured_client.utils import BackoffStrategy, RetryConfig
s = unstructured_client.UnstructuredClient(
api_key_auth="YOUR_API_KEY",
)
res = s.general.partition(request=operations.PartitionRequest(
partition_parameters=shared.PartitionParameters(
files=shared.Files(
content='0x2cC94b2FEF'.encode(),
file_name='your_file_here',
),
split_pdf_page_range=[
1,
10,
],
strategy=shared.Strategy.AUTO,
),
),
RetryConfig('backoff', BackoffStrategy(1, 50, 1.1, 100), False))
if res.elements is not None:
# handle response
pass
If you'd like to override the default retry strategy for all operations that support retries, you can use the retry_config
optional parameter when initializing the SDK:
import unstructured_client
from unstructured_client.models import operations, shared
from unstructured_client.utils import BackoffStrategy, RetryConfig
s = unstructured_client.UnstructuredClient(
retry_config=RetryConfig('backoff', BackoffStrategy(1, 50, 1.1, 100), False),
api_key_auth="YOUR_API_KEY",
)
res = s.general.partition(request=operations.PartitionRequest(
partition_parameters=shared.PartitionParameters(
files=shared.Files(
content='0x2cC94b2FEF'.encode(),
file_name='your_file_here',
),
split_pdf_page_range=[
1,
10,
],
strategy=shared.Strategy.AUTO,
),
))
if res.elements is not None:
# handle response
pass
The Python SDK makes API calls using the requests HTTP library. In order to provide a convenient way to configure timeouts, cookies, proxies, custom headers, and other low-level configuration, you can initialize the SDK client with a custom requests.Session
object.
For example, you could specify a header for every request that this sdk makes as follows:
import unstructured_client
import requests
http_client = requests.Session()
http_client.headers.update({'x-custom-header': 'someValue'})
s = unstructured_client.UnstructuredClient(client=http_client)
This SDK is in beta, and there may be breaking changes between versions without a major version update. Therefore, we recommend pinning usage to a specific package version. This way, you can install the same version each time without breaking changes unless you are intentionally looking for the latest version.
The following instructions are intended to help you get up and running with unstructured-python-client
locally if you are planning to contribute to the project.
-
Using
pyenv
to manage virtualenv's is recommended but not necessary -
Create a virtualenv to work in and activate it, e.g. for one named
unstructured-python-client
:pyenv virtualenv 3.10 unstructured-python-client
pyenv activate unstructured-python-client
-
Run
make install
andmake test
While we value open-source contributions to this SDK, this library is generated programmatically by Speakeasy. In order to start working with this repo, you need to:
- Install Speakeasy client locally https://github.com/speakeasy-api/speakeasy#installation
- Run
speakeasy auth login
- Run
make client-generate
. This allows to iterate development with python client.
There are two important files used by make client-generate
:
openapi.json
which is actually not stored here, but fetched from unstructured-api, represents the API that is supported on backend.overlay_client.yaml
is a handcrafted diff that when applied over above, producesopenapi_client.json
which is used to generate SDK.
Once PR with changes is merged, Github CI will autogenerate the Speakeasy client in a new PR, using
the openapi.json
and overlay_client.yaml
You will have to manually bring back the human created lines in it.
Feel free to open a PR or a Github issue as a proof of concept and we'll do our best to include it in a future release!