Skip to content

EnVision-Research/Generalizable-BEV

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generalizable-BEV

A plug-and-play BEV generalization framework that can leverage both unlabeled and labeled data.

Get Started

step 1. Prepare the environment refer to BEVDet.

step 2. Prepare PDBEV repo by.

git clone https://github.com/EnVision-Research/Generalizable-BEV.git
cd Generalizable-BEV
pip install -v -e .

step 3. Prepare datasets:

The preparation of the dataset is actually to generate the corresponding index (pkl files), which can then be used with the dataset that we have created.

nuScenes dataset pkl file generation refers to Details
DeepAccident dataset pkl file generation refers to Details, and then use ./tools/Deepaccident_converter.py to convert to a uniform format.
Lyft use ./tools/Lyft_converter.py to convert to a uniform format.

The pre-processed pkl of the three data sets can be downloaded directly [here].

step 4. Train for domain generalization:

bash tools/dist_train.sh  $confige_file$  $Gpus_num$     

For example:

bash tools/dist_train.sh  ./configs/PDBEV/pdbev-r50-cbgs-NUS2X-dg.py   8     # nuScenes as source domain, using 8 gpus
bash tools/dist_train.sh  ./configs/PDBEV/pdbev-r50-cbgs-LYFT2X-dg.py  8     # Lyft as source domain, using 8 gpus
bash tools/dist_train.sh  ./configs/PDBEV/pdbev-r50-cbgs-DA2X-dg.py    8     # DeepAccident as source domain, using 8 gpus

step 5. Train for unsupervised domain adaptation:

bash tools/dist_train.sh  $confige_file$  c   --checkpoint  $the pretrained models on source domain$

For example:

bash tools/dist_train.sh  ./configs/PDBEV/pcbev-uda-NUS2LYFT.py  8 --checkpoint ./work_dirs/pdbev-r50-cbgs-NUS2X-dg/epoch_23.pth
# nuScenes as source domain, LYFT as target domain, using 8 gpus, loading DG pretrain models at 23 epoch
# You only need to modify the path of the configuration file of different data set D and the corresponding model M to test the performance of model M on the corresponding data set D. It is worth mentioning that none of our algorithms change the model infrastructure, so they are only used for BEVDepth evaluation.

step 6. Test at target domain:

bash ./tools/dist_test.sh &test dataset config_file&  &model_path&   $Gpus_num$  --eval bbox --out  $output_path$

For example:

bash ./tools/dist_test.sh ./configs/bevdet_our/bevdepth-r50-cbgs-pc-lyft.py  ./work_dirs/pdbev-r50-cbgs-NUS2X-dg/epoch_24.pth 8 --eval bbox --out ./work_dirs/bevdepth-r50-cbgs-pc-nus/nus.pkl

Acknowledgement

This project is not possible without multiple great open-sourced code bases. We list some notable examples: BEVDet, DeepAccident, Lyft.

Email

hlu585@connect.hkust-gz.edu.cn

Citation

@InProceedings{PD-BEV,
    author    = {Hao LU, Yunpeng ZHANG, Qing LIAN, Dalong DU, Ying-Cong CHEN},
    title     = {Towards Generalizable Multi-Camera 3D Object Detection via Perspective Debiasing},
    booktitle = {arXiv preprint arXiv:2310.11346},
    year      = {2023},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages