Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump compat for Metalhead #232

Merged
merged 5 commits into from
Aug 24, 2023
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ ColorTypes = "0.10.3, 0.11"
ComputationalResources = "0.3.2"
Flux = "0.13, 0.14"
MLJModelInterface = "1.1.1"
Metalhead = "0.7"
Metalhead = "0.8"
ProgressMeter = "1.7.1"
Tables = "1.0"
julia = "1.6"
Expand Down
38 changes: 22 additions & 16 deletions src/metalhead.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,10 @@ TODO: After https://github.com/FluxML/Metalhead.jl/issues/176:

- Export and externally document `image_builder` method

- Delete definition of `ResNetHack` below
- Delete definition of `VGGHack` below

- Change default builder in ImageClassifier (see /src/types.jl) from
`image_builder(ResNetHack)` to `image_builder(Metalhead.ResNet)`.
`image_builder(VGGHack)` to `image_builder(Metalhead.VGG)`.

=#

Expand Down Expand Up @@ -51,7 +51,7 @@ Base.show(io::IO, w::MetalheadBuilder) =

Return an MLJFlux builder object based on the Metalhead.jl constructor/type
`metalhead_constructor` (eg, `Metalhead.ResNet`). Here `args` and `kwargs` are
passed to the `MetalheadType` constructor at "build time", along with
passed as arguments to `metalhead_constructor` at "build time", along with
the extra keyword specifiers `imsize=...`, `inchannels=...` and
`nclasses=...`, with values inferred from the data.

Expand All @@ -61,14 +61,14 @@ If in Metalhead.jl you would do

```julia
using Metalhead
model = ResNet(50, pretrain=true, inchannels=1, nclasses=10)
model = ResNet(50, pretrain=false, inchannels=1, nclasses=10)
```

then in MLJFlux, it suffices to do

```julia
using MLJFlux, Metalhead
builder = image_builder(ResNet, 50, pretrain=true)
builder = image_builder(ResNet, 50, pretrain=false)
```

which can be used in `ImageClassifier` as in
Expand Down Expand Up @@ -122,25 +122,31 @@ function VGGHack(
pretrain=false,
)

# Adapted from
# https://github.com/FluxML/Metalhead.jl/blob/9edff63222720ff84671b8087dd71eb370a6c35a/src/convnets/vgg.jl#L165
# Adapted from
# https://github.com/FluxML/Metalhead.jl/blob/4e5b8f16964468518eeb6eb8d7e5f85af4ecf959/src/convnets/vgg.jl#L161
# But we do not ignore `imsize`.

@assert(
depth in keys(Metalhead.vgg_config),
"depth must be from one in $(sort(collect(keys(Metalhead.vgg_config))))"
depth in keys(Metalhead.VGG_CONFIGS),
"depth must be from one in $(sort(collect(keys(Metalhead.VGG_CONFIGS))))"
)
model = Metalhead.VGG(imsize;
config = Metalhead.vgg_conv_config[Metalhead.vgg_config[depth]],
config = Metalhead.VGG_CONV_CONFIGS[Metalhead.VGG_CONFIGS[depth]],
inchannels,
batchnorm,
nclasses,
fcsize = 4096,
dropout = 0.5)
if pretrain && !batchnorm
Metalhead.loadpretrain!(model, string("VGG", depth))
elseif pretrain
Metalhead.loadpretrain!(model, "VGG$(depth)-BN)")
dropout_prob = 0.5)
if pretrain
imsize == (224, 224) || @warn "Using `pretrain=true` may not work unless "*
"image size is `(224, 224)`, which it is not. "
artifact_name = string("vgg", depth)
if batchnorm
artifact_name *= "_bn"
else
artifact_name *= "-IMAGENET1K_V1"
end
loadpretrain!(model, artifact_name)
end

return model
end
9 changes: 5 additions & 4 deletions src/mlj_model_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ end

# # FIT AND UPDATE

const ERR_BUILDER =
const ERR_BUILDER =
"Builder does not appear to build an architecture compatible with supplied data. "

true_rng(model) = model.rng isa Integer ? MersenneTwister(model.rng) : model.rng
Expand All @@ -60,17 +60,18 @@ function MLJModelInterface.fit(model::MLJFluxModel,
catch ex
@error ERR_BUILDER
end

penalty = Penalty(model)
data = move.(collate(model, X, y))

x = data |> first |> first
x = data[1][1]

try
chain(x)
catch ex
@error ERR_BUILDER
throw(ex)
end
end

optimiser = deepcopy(model.optimiser)

Expand Down
2 changes: 1 addition & 1 deletion test/builders.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ end

# reproducibility (without dropout):
chain2 = MLJFlux.build(builder, StableRNGs.StableRNG(123), 5, 3)
x = rand(5)
x = rand(Float32, 5)
@test chain(x) ≈ chain2(x)
end

Expand Down
10 changes: 5 additions & 5 deletions test/core.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ rowvec(y::Vector) = reshape(y, 1, length(y))
@test MLJFlux.MLJModelInterface.istransparent(Flux.Adam(0.1))

@testset "nrows" begin
Xmatrix = rand(stable_rng, 10, 3)
Xmatrix = rand(stable_rng, Float32, 10, 3)
X = MLJBase.table(Xmatrix)
@test MLJFlux.nrows(X) == 10
@test MLJFlux.nrows(Tables.columntable(X)) == 10
Expand All @@ -19,7 +19,7 @@ end
# convert to a column table:
X = MLJBase.table(Xmatrix)

y = rand(stable_rng, 10)
y = rand(stable_rng, Float32, 10)
model = MLJFlux.NeuralNetworkRegressor()
model.batch_size= 3
@test MLJFlux.collate(model, X, y) ==
Expand All @@ -38,7 +38,7 @@ end
reshape([1; 0], (2,1))]))

# MultitargetNeuralNetworRegressor:
ymatrix = rand(stable_rng, 10, 2)
ymatrix = rand(stable_rng, Float32, 10, 2)
y = MLJBase.table(ymatrix) # a rowaccess table
model = MLJFlux.NeuralNetworkRegressor()
model.batch_size= 3
Expand All @@ -54,7 +54,7 @@ end
ymatrix'[:,7:9], ymatrix'[:,10:10]]))

# ImageClassifier
Xmatrix = coerce(rand(stable_rng, 6, 6, 1, 10), GrayImage)
Xmatrix = coerce(rand(stable_rng, Float32, 6, 6, 1, 10), GrayImage)
y = categorical(['a', 'b', 'a', 'a', 'b', 'a', 'a', 'a', 'b', 'a'])
model = MLJFlux.ImageClassifier(batch_size=2)

Expand All @@ -69,7 +69,7 @@ end

end

Xmatrix = rand(stable_rng, 100, 5)
Xmatrix = rand(stable_rng, Float32, 100, 5)
X = MLJBase.table(Xmatrix)
y = Xmatrix[:, 1] + Xmatrix[:, 2] + Xmatrix[:, 3] +
Xmatrix[:, 4] + Xmatrix[:, 5]
Expand Down
35 changes: 23 additions & 12 deletions test/image.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,29 @@ mutable struct MyNeuralNetwork <: MLJFlux.Builder
kernel2
end

function MLJFlux.build(model::MyNeuralNetwork, rng, ip, op, n_channels)
# to get a matrix whose last dimension mathces that of the array input (the batch size):
function make2d(x)
l = length(x)
b = size(x)[end]
reshape(x, div(l, b), b)
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So I thought this use of reshape would avoid the "scalar indexing error", but tests are still not passing.

end

function MLJFlux.build(builder::MyNeuralNetwork, rng, ip, op, n_channels)
init = Flux.glorot_uniform(rng)
Flux.Chain(
Flux.Conv(model.kernel1, n_channels=>2, init=init),
Flux.Conv(model.kernel2, 2=>1, init=init),
x->reshape(x, :, size(x)[end]),
Flux.Dense(16, op, init=init))
front = Flux.Chain(
Flux.Conv(builder.kernel1, n_channels=>2, init=init),
Flux.Conv(builder.kernel2, 2=>1, init=init),
make2d,
)
d = Flux.outputsize(front, (ip..., n_channels, 1))[1]
return Flux.Chain(
front,
Flux.Dense(d, op, init=init)
)
end

builder = MyNeuralNetwork((2,2), (2,2))
images, labels = MLJFlux.make_images(stable_rng)
images, labels = MLJFlux.make_images(stable_rng);
losses = []

@testset_accelerated "ImageClassifier basic tests" accel begin
Expand Down Expand Up @@ -69,8 +81,6 @@ reference = losses[1]

# # BASIC IMAGE TESTS COLOR

# In this case we use the default ResNet builder

builder = MyNeuralNetwork((2,2), (2,2))
images, labels = MLJFlux.make_images(stable_rng, color=true)
losses = []
Expand Down Expand Up @@ -112,12 +122,13 @@ reference = losses[1]
@test all(x->abs(x - reference)/reference < 1e-5, losses[2:end])


# # SMOKE TEST FOR DEFAULT BUILDER
# # SMOKE TEST FOR DEFAULT BUILDER

images, labels = MLJFlux.make_images(stable_rng, image_size=(32, 32), n_images=12, noise=0.2, color=true);
images, labels = MLJFlux.make_images(stable_rng, image_size=(32, 32), n_images=12,
noise=0.2, color=true);

@testset_accelerated "ImageClassifier basic tests" accel begin
model = MLJFlux.ImageClassifier(epochs=10,
model = MLJFlux.ImageClassifier(epochs=5,
batch_size=4,
acceleration=accel,
rng=stable_rng)
Expand Down
19 changes: 9 additions & 10 deletions test/metalhead.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,16 +42,15 @@ end
@test builder.metalhead_constructor == Metalhead.VGG
@test builder.args == (depth, )
@test (; builder.kwargs...) == (; batchnorm=true)
ref_chain = Metalhead.VGG(
imsize;
config = Metalhead.vgg_conv_config[Metalhead.vgg_config[depth]],
inchannels,
batchnorm=true,
nclasses,
fcsize = 4096,
dropout = 0.5
)
# needs https://github.com/FluxML/Metalhead.jl/issues/176

## needs https://github.com/FluxML/Metalhead.jl/issues/176:
# ref_chain = Metalhead.VGG(
# imsize;
# config = Metalhead.VGG_CONV_CONFIGS[Metalhead.VGG_CONFIGS[depth]],
# inchannels,
# batchnorm=true,
# nclasses,
# )
# chain =
# MLJFlux.build(builder, StableRNGs.StableRNG(123), imsize, nclasses, inchannels)
# @test length.(MLJFlux.Flux.params(ref_chain)) ==
Expand Down
1 change: 1 addition & 0 deletions test/mlj_model_interface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@ end

# integration test:
X, y = MLJBase.make_regression(10)
X = Float32.(MLJBase.Tables.matrix(X)) |> MLJBase.Tables.table
mach = MLJBase.machine(model, X, y)
MLJBase.fit!(mach, verbosity=0)
losses = MLJBase.training_losses(mach)
Expand Down