Skip to content

GRAAL-Research/domain_adaptation_of_linear_classifiers

Repository files navigation

---------------------------------------------------------------------------
DOMAIN ADAPTATION OF LINEAR CLASSIFIERS (aka DALC)
Version 0.90 (November 2, 2015), Released under the BSD-license
---------------------------------------------------------------------------
Author:
    Pascal Germain. Groupe de Recherche en Apprentissage Automatique
    de l'Universite Laval (GRAAL).

Reference:
    Pascal Germain, Amaury Habrard, Francois Laviolette, and Emilie Morvant.
    A New PAC-Bayesian Perspective on Domain Adaptation.
    International Conference on Machine Learning (ICML) 2016.
    http://arxiv.org/abs/1506.04573
----------------------------------------------------------------------------

Thank you for looking at my code!

This program have been tested using Python 3.6 under Linux and MacOS.
It requires the NumPy and SciPy libraries.

I prepared three small scripts to use DALC by the command line:
1) dalc_learn.py: Execute the learning algorithm
2) dalc_classify.py: Execute the classification function
3) dalc_reverse_cv.py: Compute a "reverse cross-validation" score

Further usage instructions can be obtained by the following commands:
python dalc_learn.py --help
python dalc_classify.py --help
python dalc_reverse_cv.py --help

The data used in the paper experiments is available here (in svmlight format):
http://researchers.lille.inria.fr/pgermain/data/amazon_tfidf_svmlight.tgz

Pascal Germain.

About

Learning algorithm described in "A New PAC-Bayesian Perspective on Domain Adaptation" (see http://arxiv.org/abs/1506.04573)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages