Skip to content

This project aims to compare traditional Machine Learning methods for tabular data classification, such as Ensemble methods, Decision Trees, and Naive Bayes, with NLP classification methods like Multinomial Naive Bayes, RNNs, and Transformers. We are utilizing survey data from the CDC via the Behavioral Risk Factor Surveillance System (BRFSS)

License

Notifications You must be signed in to change notification settings

GeorgeM2000/CDC-SMART-BRFSS-City-and-County-Data-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CDC SMART BRFSS City and Country Data Analysis

This project aims to compare traditional Machine Learning methods for tabular data classification, such as Ensemble methods, Decision Trees, and Naive Bayes, with NLP classification methods like Multinomial Naive Bayes, RNNs, and Transformers. The comparison is conducted after converting tabular data into a text format. We are utilizing survey data from the CDC via the Behavioral Risk Factor Surveillance System (BRFSS), the United States' system for health-related telephone surveys. BRFSS collects state-level data on health-related risk behaviors such as smoking, chronic health conditions such as heart disease and diabetes, and preventive services utilization among U.S. residents.

About

This project aims to compare traditional Machine Learning methods for tabular data classification, such as Ensemble methods, Decision Trees, and Naive Bayes, with NLP classification methods like Multinomial Naive Bayes, RNNs, and Transformers. We are utilizing survey data from the CDC via the Behavioral Risk Factor Surveillance System (BRFSS)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published