Skip to content

Commit

Permalink
Merge branch 'master' into xmpp
Browse files Browse the repository at this point in the history
  • Loading branch information
waprin committed Apr 28, 2016
2 parents f98ba0e + fbe7dc0 commit 2adb1c9
Show file tree
Hide file tree
Showing 2 changed files with 426 additions and 0 deletions.
287 changes: 287 additions & 0 deletions appengine/search/snippets/snippets.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,287 @@
# Copyright 2016 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from datetime import datetime

from google.appengine.api import search


def simple_search(index):
index.search('rose water')


def search_date(index):
index.search('1776-07-04')


def search_terms(index):
# search for documents with pianos that cost less than $5000
index.search("product = piano AND price < 5000")


def create_document():
document = search.Document(
# Setting the doc_id is optional. If omitted, the search service will
# create an identifier.
doc_id='PA6-5000',
fields=[
search.TextField(name='customer', value='Joe Jackson'),
search.HtmlField(
name='comment', value='this is <em>marked up</em> text'),
search.NumberField(name='number_of_visits', value=7),
search.DateField(name='last_visit', value=datetime.now()),
search.DateField(
name='birthday', value=datetime(year=1960, month=6, day=19)),
search.GeoField(
name='home_location', value=search.GeoPoint(37.619, -122.37))
])
return document


def add_document_to_index(document):
index = search.Index('products')
index.put(document)


def add_document_and_get_doc_id(documents):
index = search.Index('products')
results = index.put(documents)
document_ids = [document.id for document in results]
return document_ids


def get_document_by_id():
index = search.Index('products')

# Get a single document by ID.
document = index.get("AZ125")

# Get a range of documents starting with a given ID.
documents = index.get_range(start_id="AZ125", limit=100)

return document, documents


def query_index():
index = search.Index('products')
query_string = 'product: piano AND price < 5000'

results = index.search(query_string)

for scored_document in results:
print(scored_document)


def delete_all_in_index(index):
# index.get_range by returns up to 100 documents at a time, so we must
# loop until we've deleted all items.
while True:
# Use ids_only to get the list of document IDs in the index without
# the overhead of getting the entire document.
document_ids = [
document.doc_id
for document
in index.get_range(ids_only=True)]

# If no IDs were returned, we've deleted everything.
if not document_ids:
break

# Delete the documents for the given IDs
index.delete(document_ids)


def async_query(index):
futures = [index.search_async('foo'), index.search_async('bar')]
results = [future.get_result() for future in futures]
return results


def query_options():
index = search.Index('products')
query_string = "product: piano AND price < 5000"

# Create sort options to sory on price and brand.
sort_price = search.SortExpression(
expression='price',
direction=search.SortExpression.DESCENDING,
default_value=0)
sort_brand = search.SortExpression(
expression='brand',
direction=search.SortExpression.DESCENDING,
default_value="")
sort_options = search.SortOptions(expressions=[sort_price, sort_brand])

# Create field expressions to add new fields to the scored documents.
price_per_note_expression = search.FieldExpression(
name='price_per_note', expression='price/88')
ivory_expression = search.FieldExpression(
name='ivory', expression='snippet("ivory", summary, 120)')

# Create query options using the sort options and expressions created
# above.
query_options = search.QueryOptions(
limit=25,
returned_fields=['model', 'price', 'description'],
returned_expressions=[price_per_note_expression, ivory_expression],
sort_options=sort_options)

# Build the Query and run the search
query = search.Query(query_string=query_string, options=query_options)
results = index.search(query)
for scored_document in results:
print(scored_document)


def query_results(index, query_string):
result = index.search(query_string)
total_matches = result.number_found
list_of_docs = result.results
number_of_docs_returned = len(list_of_docs)
return total_matches, list_of_docs, number_of_docs_returned


def query_offset(index, query_string):
offset = 0

while True:
# Build the query using the current offset.
options = search.QueryOptions(offset=offset)
query = search.Query(query_string=query_string, options=options)

# Get the results
results = index.search(query)

number_retrieved = len(results.results)
if number_retrieved == 0:
break

# Add the number of documents found to the offset, so that the next
# iteration will grab the next page of documents.
offset += number_retrieved

# Process the matched documents
for document in results:
print(document)


def query_cursor(index, query_string):
cursor = search.Cursor()

while cursor:
# Build the query using the cursor.
options = search.QueryOptions(cursor=cursor)
query = search.Query(query_string=query_string, options=options)

# Get the results and the next cursor
results = index.search(query)
cursor = results.cursor

for document in results:
print(document)


def query_per_document_cursor(index, query_string):
cursor = search.Cursor(per_result=True)

# Build the query using the cursor.
options = search.QueryOptions(cursor=cursor)
query = search.Query(query_string=query_string, options=options)

# Get the results.
results = index.search(query)

document_cursor = None
for document in results:
# discover some document of interest and grab its cursor, for this
# sample we'll just use the first document.
document_cursor = document.cursor
break

# Start the next search from the document of interest.
if document_cursor is None:
return

options = search.QueryOptions(cursor=document_cursor)
query = search.Query(query_string=query_string, options=options)
results = index.search(query)

for document in results:
print(document)


def saving_and_restoring_cursor(cursor):
# Convert the cursor to a web-safe string.
cursor_string = cursor.web_safe_string
# Restore the cursor from a web-safe string.
cursor = search.Cursor(web_safe_string=cursor_string)


def add_faceted_document(index):
document = search.Document(
doc_id='doc1',
fields=[
search.AtomField(name='name', value='x86')],
facets=[
search.AtomFacet(name='type', value='computer'),
search.NumberFacet(name='ram_size_gb', value=8)])

index.put(document)


def facet_discovery(index):
# Create the query and enable facet discovery.
query = search.Query('name:x86', enable_facet_discovery=True)
results = index.search(query)

for facet in results.facets:
print('facet {}.'.format(facet.name))
for value in facet.values:
print('{}: count={}, refinement_token={}'.format(
value.label, value.count, value.refinement_token))


def facet_by_name(index):
# Create the query and specify to only return the "type" and "ram_size_gb"
# facets.
query = search.Query('name:x86', return_facets=['type', 'ram_size_gb'])
results = index.search(query)

for facet in results.facets:
print('facet {}'.format(facet.name))
for value in facet.values:
print('{}: count={}, refinement_token={}'.format(
value.label, value.count, value.refinement_token))


def facet_by_name_and_value(index):
# Create the query and specify to return the "type" facet with values
# "computer" and "printer" and the "ram_size_gb" facet with value in the
# ranges [0,4), [4, 8), and [8, max].
query = search.Query(
'name:x86',
return_facets=[
search.FacetRequest('type', values=['computer', 'printer']),
search.FacetRequest('ram_size_gb', ranges=[
search.FacetRange(end=4),
search.FacetRange(start=4, end=8),
search.FacetRange(start=8)])
])

results = index.search(query)
for facet in results.facets:
print('facet {}'.format(facet.name))
for value in facet.values:
print('{}: count={}, refinement_token={}'.format(
value.label, value.count, value.refinement_token))
Loading

0 comments on commit 2adb1c9

Please sign in to comment.