-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
426 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,287 @@ | ||
# Copyright 2016 Google Inc. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from datetime import datetime | ||
|
||
from google.appengine.api import search | ||
|
||
|
||
def simple_search(index): | ||
index.search('rose water') | ||
|
||
|
||
def search_date(index): | ||
index.search('1776-07-04') | ||
|
||
|
||
def search_terms(index): | ||
# search for documents with pianos that cost less than $5000 | ||
index.search("product = piano AND price < 5000") | ||
|
||
|
||
def create_document(): | ||
document = search.Document( | ||
# Setting the doc_id is optional. If omitted, the search service will | ||
# create an identifier. | ||
doc_id='PA6-5000', | ||
fields=[ | ||
search.TextField(name='customer', value='Joe Jackson'), | ||
search.HtmlField( | ||
name='comment', value='this is <em>marked up</em> text'), | ||
search.NumberField(name='number_of_visits', value=7), | ||
search.DateField(name='last_visit', value=datetime.now()), | ||
search.DateField( | ||
name='birthday', value=datetime(year=1960, month=6, day=19)), | ||
search.GeoField( | ||
name='home_location', value=search.GeoPoint(37.619, -122.37)) | ||
]) | ||
return document | ||
|
||
|
||
def add_document_to_index(document): | ||
index = search.Index('products') | ||
index.put(document) | ||
|
||
|
||
def add_document_and_get_doc_id(documents): | ||
index = search.Index('products') | ||
results = index.put(documents) | ||
document_ids = [document.id for document in results] | ||
return document_ids | ||
|
||
|
||
def get_document_by_id(): | ||
index = search.Index('products') | ||
|
||
# Get a single document by ID. | ||
document = index.get("AZ125") | ||
|
||
# Get a range of documents starting with a given ID. | ||
documents = index.get_range(start_id="AZ125", limit=100) | ||
|
||
return document, documents | ||
|
||
|
||
def query_index(): | ||
index = search.Index('products') | ||
query_string = 'product: piano AND price < 5000' | ||
|
||
results = index.search(query_string) | ||
|
||
for scored_document in results: | ||
print(scored_document) | ||
|
||
|
||
def delete_all_in_index(index): | ||
# index.get_range by returns up to 100 documents at a time, so we must | ||
# loop until we've deleted all items. | ||
while True: | ||
# Use ids_only to get the list of document IDs in the index without | ||
# the overhead of getting the entire document. | ||
document_ids = [ | ||
document.doc_id | ||
for document | ||
in index.get_range(ids_only=True)] | ||
|
||
# If no IDs were returned, we've deleted everything. | ||
if not document_ids: | ||
break | ||
|
||
# Delete the documents for the given IDs | ||
index.delete(document_ids) | ||
|
||
|
||
def async_query(index): | ||
futures = [index.search_async('foo'), index.search_async('bar')] | ||
results = [future.get_result() for future in futures] | ||
return results | ||
|
||
|
||
def query_options(): | ||
index = search.Index('products') | ||
query_string = "product: piano AND price < 5000" | ||
|
||
# Create sort options to sory on price and brand. | ||
sort_price = search.SortExpression( | ||
expression='price', | ||
direction=search.SortExpression.DESCENDING, | ||
default_value=0) | ||
sort_brand = search.SortExpression( | ||
expression='brand', | ||
direction=search.SortExpression.DESCENDING, | ||
default_value="") | ||
sort_options = search.SortOptions(expressions=[sort_price, sort_brand]) | ||
|
||
# Create field expressions to add new fields to the scored documents. | ||
price_per_note_expression = search.FieldExpression( | ||
name='price_per_note', expression='price/88') | ||
ivory_expression = search.FieldExpression( | ||
name='ivory', expression='snippet("ivory", summary, 120)') | ||
|
||
# Create query options using the sort options and expressions created | ||
# above. | ||
query_options = search.QueryOptions( | ||
limit=25, | ||
returned_fields=['model', 'price', 'description'], | ||
returned_expressions=[price_per_note_expression, ivory_expression], | ||
sort_options=sort_options) | ||
|
||
# Build the Query and run the search | ||
query = search.Query(query_string=query_string, options=query_options) | ||
results = index.search(query) | ||
for scored_document in results: | ||
print(scored_document) | ||
|
||
|
||
def query_results(index, query_string): | ||
result = index.search(query_string) | ||
total_matches = result.number_found | ||
list_of_docs = result.results | ||
number_of_docs_returned = len(list_of_docs) | ||
return total_matches, list_of_docs, number_of_docs_returned | ||
|
||
|
||
def query_offset(index, query_string): | ||
offset = 0 | ||
|
||
while True: | ||
# Build the query using the current offset. | ||
options = search.QueryOptions(offset=offset) | ||
query = search.Query(query_string=query_string, options=options) | ||
|
||
# Get the results | ||
results = index.search(query) | ||
|
||
number_retrieved = len(results.results) | ||
if number_retrieved == 0: | ||
break | ||
|
||
# Add the number of documents found to the offset, so that the next | ||
# iteration will grab the next page of documents. | ||
offset += number_retrieved | ||
|
||
# Process the matched documents | ||
for document in results: | ||
print(document) | ||
|
||
|
||
def query_cursor(index, query_string): | ||
cursor = search.Cursor() | ||
|
||
while cursor: | ||
# Build the query using the cursor. | ||
options = search.QueryOptions(cursor=cursor) | ||
query = search.Query(query_string=query_string, options=options) | ||
|
||
# Get the results and the next cursor | ||
results = index.search(query) | ||
cursor = results.cursor | ||
|
||
for document in results: | ||
print(document) | ||
|
||
|
||
def query_per_document_cursor(index, query_string): | ||
cursor = search.Cursor(per_result=True) | ||
|
||
# Build the query using the cursor. | ||
options = search.QueryOptions(cursor=cursor) | ||
query = search.Query(query_string=query_string, options=options) | ||
|
||
# Get the results. | ||
results = index.search(query) | ||
|
||
document_cursor = None | ||
for document in results: | ||
# discover some document of interest and grab its cursor, for this | ||
# sample we'll just use the first document. | ||
document_cursor = document.cursor | ||
break | ||
|
||
# Start the next search from the document of interest. | ||
if document_cursor is None: | ||
return | ||
|
||
options = search.QueryOptions(cursor=document_cursor) | ||
query = search.Query(query_string=query_string, options=options) | ||
results = index.search(query) | ||
|
||
for document in results: | ||
print(document) | ||
|
||
|
||
def saving_and_restoring_cursor(cursor): | ||
# Convert the cursor to a web-safe string. | ||
cursor_string = cursor.web_safe_string | ||
# Restore the cursor from a web-safe string. | ||
cursor = search.Cursor(web_safe_string=cursor_string) | ||
|
||
|
||
def add_faceted_document(index): | ||
document = search.Document( | ||
doc_id='doc1', | ||
fields=[ | ||
search.AtomField(name='name', value='x86')], | ||
facets=[ | ||
search.AtomFacet(name='type', value='computer'), | ||
search.NumberFacet(name='ram_size_gb', value=8)]) | ||
|
||
index.put(document) | ||
|
||
|
||
def facet_discovery(index): | ||
# Create the query and enable facet discovery. | ||
query = search.Query('name:x86', enable_facet_discovery=True) | ||
results = index.search(query) | ||
|
||
for facet in results.facets: | ||
print('facet {}.'.format(facet.name)) | ||
for value in facet.values: | ||
print('{}: count={}, refinement_token={}'.format( | ||
value.label, value.count, value.refinement_token)) | ||
|
||
|
||
def facet_by_name(index): | ||
# Create the query and specify to only return the "type" and "ram_size_gb" | ||
# facets. | ||
query = search.Query('name:x86', return_facets=['type', 'ram_size_gb']) | ||
results = index.search(query) | ||
|
||
for facet in results.facets: | ||
print('facet {}'.format(facet.name)) | ||
for value in facet.values: | ||
print('{}: count={}, refinement_token={}'.format( | ||
value.label, value.count, value.refinement_token)) | ||
|
||
|
||
def facet_by_name_and_value(index): | ||
# Create the query and specify to return the "type" facet with values | ||
# "computer" and "printer" and the "ram_size_gb" facet with value in the | ||
# ranges [0,4), [4, 8), and [8, max]. | ||
query = search.Query( | ||
'name:x86', | ||
return_facets=[ | ||
search.FacetRequest('type', values=['computer', 'printer']), | ||
search.FacetRequest('ram_size_gb', ranges=[ | ||
search.FacetRange(end=4), | ||
search.FacetRange(start=4, end=8), | ||
search.FacetRange(start=8)]) | ||
]) | ||
|
||
results = index.search(query) | ||
for facet in results.facets: | ||
print('facet {}'.format(facet.name)) | ||
for value in facet.values: | ||
print('{}: count={}, refinement_token={}'.format( | ||
value.label, value.count, value.refinement_token)) |
Oops, something went wrong.