Skip to content

GuitarsAI/TopicsInAudioAndMusicTech

Repository files navigation

Topics in Audio Processing & Music Technology

Content

  • 01 DDSP: Differentiable Digital Signal Processing Youtube

  • 02 Differentiable Digital Signal Processing: Timbre Transfer - Deep LearningYoutubeOpen In Colab

    • 00:00:00 Timbre Transfer Demo
    • 00:02:55 Installing and Importing the DDSP Library
    • 00:03:10 Recording or Uploading Audio
    • 00:05:08 Loading a Model: Violin
    • 00:06:56 Resynthesizing Audio
    • 00:08:01 Modifying Conditioning
    • 00:09:06 Pre-trained Trumpet Model
    • 00:10:22 Pre-trained Flute2 Model
    • 00:11:18 Pre-trained Tenor Saxophone Model
    • 00:12:56 Pitch Shifting
    • 00:13:50 Demo Application Conclusions
    • 00:15:19 DDSP ICLR Paper: The International Conference on Learning Representations
    • 00:17:18 Install and Imports
    • 00:18:16 Gin Config Framework
    • 00:22:35 Recording Audio
    • 00:26:23 base64: Decode the Base64 encoded bytes-like object or ASCII string
    • 00:26:43 Audio bytes to Numpy
    • 00:27:44 Uploading an Audio File
    • 00:29:29 Colab Files Upload
    • 00:33:43 Log Magnitude Spectrogram
    • 00:36:40 DDSP Spectral Operations: Compute Magnitude
    • 00:37:11 DDSP Spectral Operations: Short-time Fourier Transform (STFT)
    • 00:38:15 Tensorflow Signal: Short-time Fourier Transform (STFT)
    • 00:39:37 DDSP Safe Log
    • 00:43:14 Numpy Rotate 90
    • 00:44:56 Pyplot Matshow
    • 00:46:33 DDSP Colab Utils: Play Audio
    • 00:49:52 Scipy IO Wavfile Write
    • 00:51:37 IPython Display Audio
    • 00:55:29 Computing Audio Features
    • 00:56:28 CREPE: A Convolutional Representation for Pitch Estimation
    • 00:57:39 CREPE ICASSP 2018 Paper
    • 01:06:16 DDSP Timbre Transfer Audio Features
    • 01:09:28 Computing F0
    • 01:10:23 Viterbi Algorithm
    • 01:13:38 Computing Loudness
    • 01:17:50 Dynamics, Intensity and Loudness
    • 01:21:12 A-weighting Function
    • 01:24:59 Plotting the Audio Features
    • 01:25:28 Loading a Pre-Trained Model
    • 01:27:05 Gsutil Tool
    • 01:28:22 tf.io.gfile
    • 01:29:19 Parsing Gin Config
    • 01:31:03 Gin Query Parameters
    • 01:35:57 Understanding the Pre-Trained Model
    • 01:36:16 DDSP Autoencoder Model
    • 01:37:13 DDSP Model Base Class
    • 01:39:01 DDSP ICLR Paper: Autoencoder Architecture
    • 01:39:43 Gin Config - Model Parameters
    • 01:42:17 DDSP Encoders
    • 01:44:12 DDSP Decoders
    • 01:45:47 Recurrent Neural Network (RNN)
    • 01:46:18 Gated Recurrent Units (GRUs)
    • 01:47:28 Harmonic Oscillator / Additive Synthesizer
    • 01:48:54 Filtered Noise / Subtractive Synthesizer
    • 01:50:08 Multi-Scale Spectral Loss
    • 01:51:52 DDSP Reverb
    • 01:52:21 Conclusion
  • 03 Tensorflow + Tensorboard + Scikit-learn: Simple audio recognition: Recognizing keywordsYoutubeOpen In Colab

    • 00:00:00 Introduction
    • 00:00:34 Simple audio recognition: Recognizing keywords Example
    • 00:03:53 Tensorflow Keras
    • 00:05:38 Tensorflow
    • 00:07:44 Seed for Experiment Reproducibility
    • 00:09:56 Speech Commands Dataset
    • 00:11:33 Downloading files using 'tf.keras.utils.get_file'
    • 00:15:07 Returning a list of files that match the given pattern(s) using 'tf.io.gfile.glob'
    • 00:16:19 Splitting the dataset into training, validation and testing subsets
    • 00:19:29 Scikit-learn
    • 00:20:14 Stratified ShuffleSplit
    • 00:24:38 Writing descriptive and efficient input pipelines using 'tf.data.Dataset'
    • 00:26:20 Reading the contents of a file using 'tf.io.read_file'
    • 00:27:14 Applying transformations across the elements of a dataset using '.map(...)'
    • 00:31:18 Spectrograms using 'tf.signal.stft'
    • 00:31:32 Zero-padding in Tensorflow
    • 00:34:00 Listening to audio files
    • 00:36:10 Plotting Spectrograms
    • 00:40:29 Batching the training and validation subsets using '.batch(...)'
    • 00:41:48 Caching elements of a dataset using '.cache(...)'
    • 00:42:20 Prefetching elements of a dataset unsing 'prefetch(...)'
    • 00:43:13 Preprocessing Layers: Resizing and Normalization
    • 00:43:48 Building a Sequential Model in Tensorflow Keras
    • 00:46:10 Printing a string summary of the network using '.summary()'
    • 00:46:46 Configuring the model for training using '.compile(...)'
    • 00:48:12 Configuring Tensorboard
    • 00:50:18 Training the Model using '.fit(...)'
    • 00:50:33 Visualization in Tensorboard
    • 00:52:20 Evaluating the Test set Performance
    • 00:53:39 Displaying a Confusion Matrix using '.tf.math.confusion_matrix(...)'
    • 00:54:40 Running Inference on an Audio File

YouTube Playlist

Youtube