Skip to content

HDCVLab/MC-Blur-Dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MC-Blur: A Comprehensive Benchmark for Image Deblurring

Our propsoed MC-Blur Benchmark

We construct a large-scale multi-cause (MC-Blur) dataset for image deblurring. It consists of four blur types: uniform blurs, motion blurs by averaging continuous frames, heavy defocus blurs, and real-world blurs. We collect these images from more than 1000 diverse scenes such as buildings, city scenes, vehicles, natural landscapes, people, animals, and sculptures. MC-Blur Benchmark consits of four different subsets, i.e., Real high-fps based Motion-blurred subset (RHM), large-kernel UHD Motion-blurred subset (UHDM), large-scale heavy defocus blurred subset (LSD), and Real Mixed Blurry Qualitative subset (RMBQ).

Downloads

The images of the dataset can be downloaded from the links below.

Google Drive

Baidu Cloud (How to unzip?)

  • RHM-250-500-1000 (117G total data) (password:ohzp)
  • UHDM (278G total data) (password:p78n)
  • LSD (34G total data) (password:sbtu)
  • RMBQ (110G total data) (password:nwq8)

Download MC-Blur benchmark from the script, run

python download_data.py

Note: The above script will download all subsets of the MC-Blur. You can use "--data" to select. For example:

python download_data.py --data "UHDM_train_test"

Some visual examples of MC-Blur Dataset

Visual examples for each subset of our MC-Blur Dataset.

Some code steps in synthesizing dataset

See detail in README.

Benchmarking Study

Methods

Date Publication Title Abbreviation Code Platform
2017 CVPR Deep multi-scale convolutional neural network for dynamic scene deblurring paper DeepDeblur Code Pytorch
2018 CVPR Deblurgan: Blind motion deblurring using conditional adversarial networks paper DeblurGAN Code Pytorch
2018 CVPR Scale-recurrent network for deep image deblurring paper SRN Code Tensorflow
2019 ICCV DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better paper DeblurGAN-v2 Code Pytorch
2019 CVPR Deep Stacked Hierarchical Multi-Patch Network for Image Deblurring paper DMPHN Code Pytorch
2020 CVPR Deblurring by Realistic Blurring paper DBGAN Code Pytorch
2021 CVPR Multi-Stage Progressive Image Restoration paper MPRNet Code Pytorch
2022 CVPR Restormer: Efficient Transformer for High-Resolution Image Restoration paper Restormer Code Pytorch
2021 ICCV Rethinking Coarse-To-Fine Approach in Single Image Deblurring paper MIMO-UNet Code Pytorch

Metrics

Abbreviation Full-/Non-Reference Platform Code
PSNR (Peak Signal-to-Noise Ratio) Full-Reference
SSIM (Structural Similarity Index Measurement) Full-Reference MATLAB Code
NIQE (Naturalness Image Quality Evaluator) Non-Reference MATLAB Code
SSEQ (No-reference Image Quality Assessment Based on Spatial and Spectral Entropies) Non-Reference MATLAB Code

Results for 250-fps images from RHM Set

Method PSNR SSIM Parameter
DeepDeblur 30.38 0.8766 11.72 M
DeblurGAN 24.89 0.6364 6.07 M
SRN 30.57 0.8799 6.88 M
DeblurGAN-v2 26.99 0.8061 7.84 M
DMPHN 30.42 0.8768 21.69 M
DBGAN 27.89 0.8191 11.59 M
MPRNet 31.52 0.9239 20.13 M
Restormer 30.41 0.9106 26.10 M
MIMO-UNet 32.02 0.9285 6.81 M

Results for 500-fps images from RHM Set

Method PSNR SSIM Parameter
DeepDeblur 31.08 0.8974 11.72 M
DeblurGAN 24.66 0.6748 6.07 M
SRN 31.54 0.9051 6.88 MB
DeblurGAN-v2 27.67 0.8320 7.84 M
DMPHN 31.43 0.9018 21.69 M
DBGAN 28.36 0.8388 11.59 M
MPRNet 32.08 0.9300 20.13 M
Restormer 30.98 0.9160 26.10 M
MIMO-UNet 32.89 0.9398 6.81 M

Results for 1000-fps images from RHM Set

Method PSNR SSIM Parameter
DeepDeblur 32.41 0.8966 11.72 M
DeblurGAN 25.20 0.6535 6.07 M
SRN 32.69 0.0.9016 6.88 M
DeblurGAN-v2 29.81 0.8461 7.84 M
DMPHN 32.41 0.9096 21.69 M
DBGAN 29.66 0.8318 11.59 M
MPRNet 33.36 0.9332 20.13 M
Restormer 32.77 0.9264 26.10 M
MIMO-UNet 33.75 0.9360 6.81 M

Results on UHDM Set

Method PSNR SSIM Parameter
DeepDeblur 22.23 0.6322 11.72 M
DeblurGAN 20.39 0.5568 6.07 M
SRN 22.28 0.6346 6.88 M
DeblurGAN-v2 21.03 0.5839 7.84 M
DMPHN 22.20 0.6378 21.69 M
DBGAN 21.52 0.6025 11.59 M
MPRNet 23.70 0.7472 20.13 M
Restormer 22.39 0.7356 26.10 M
MIMO-UNet 22.97 0.7317 6.81 M

Results on LSD Set

Method PSNR SSIM Parameter
DeepDeblur 20.73 0.7218 11.72 M
DeblurGAN 20.04 0.6335 6.07 M
SRN 21.66 0.7664 6.88 M
DeblurGAN-v2 21.13 0.6964 7.84 M
DMPHN 21.23 0.7519 21.69 M
DBGAN 21.56 0.7536 11.59 M
MPRNet 21.32 0.7897 20.13 M
Restormer 22.35 0.8072 26.10 M
MIMO-UNet 22.56 0.7985 6.81 M

Citation

If you think this work is useful for your research, please cite the following paper.

@inproceedings{zhang2023benchmarking,
  title={MC-Blur: A Comprehensive Benchmark for Image Deblurring},
  author={Zhang, Kaihao and Wang, Tao and Luo, Wenhan and Chen, Boheng and Ren, Wenqi and Stenger, Bjorn and Liu, Wei and Li, Hongdong and Yang Ming-Hsuan},
  booktitle={IEEE Transactions on Circuits and Systems for Video Technology},
  year={2023}
}

License

The MC-Blur dataset is released under CC BY-NC-ND license.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages