-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added lollms integration with lightrag
Removed a depricated function from ollamaserver
- Loading branch information
Showing
4 changed files
with
691 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
# LightRAG API Server | ||
|
||
A powerful FastAPI-based server for managing and querying documents using LightRAG (Light Retrieval-Augmented Generation). This server provides a REST API interface for document management and intelligent querying using various LLM models through LoLLMS. | ||
|
||
## Features | ||
|
||
- 🔍 Multiple search modes (naive, local, global, hybrid) | ||
- 📡 Streaming and non-streaming responses | ||
- 📝 Document management (insert, batch upload, clear) | ||
- ⚙️ Highly configurable model parameters | ||
- 📚 Support for text and file uploads | ||
- 🔧 RESTful API with automatic documentation | ||
- 🚀 Built with FastAPI for high performance | ||
|
||
## Prerequisites | ||
|
||
- Python 3.8+ | ||
- LoLLMS server running locally or remotely | ||
- Required Python packages: | ||
- fastapi | ||
- uvicorn | ||
- lightrag | ||
- pydantic | ||
|
||
## Installation | ||
If you are using windows, you will need to donwload and install visual c++ build tools from [https://visualstudio.microsoft.com/visual-cpp-build-tools/ ](https://visualstudio.microsoft.com/visual-cpp-build-tools/) | ||
Make sure you install the VS 2022 C++ x64/x86 Build tools like from indivisual componants tab: | ||
![image](https://github.com/user-attachments/assets/3723e15b-0a2c-42ed-aebf-e595a9f9c946) | ||
|
||
This is mandatory for builmding some modules. | ||
|
||
1. Clone the repository: | ||
```bash | ||
git clone https://github.com/ParisNeo/LightRAG.git | ||
cd api | ||
``` | ||
|
||
2. Install dependencies: | ||
```bash | ||
pip install -r requirements.txt | ||
``` | ||
|
||
3. Make sure LoLLMS is running and accessible. | ||
|
||
## Configuration | ||
|
||
The server can be configured using command-line arguments: | ||
|
||
```bash | ||
python ollama_lightollama_lightrag_server.py --help | ||
``` | ||
|
||
Available options: | ||
|
||
| Parameter | Default | Description | | ||
|-----------|---------|-------------| | ||
| --host | 0.0.0.0 | Server host | | ||
| --port | 9621 | Server port | | ||
| --model | mistral-nemo:latest | LLM model name | | ||
| --embedding-model | bge-m3:latest | Embedding model name | | ||
| --lollms-host | http://localhost:11434 | LoLLMS host URL | | ||
| --working-dir | ./rag_storage | Working directory for RAG | | ||
| --max-async | 4 | Maximum async operations | | ||
| --max-tokens | 32768 | Maximum token size | | ||
| --embedding-dim | 1024 | Embedding dimensions | | ||
| --max-embed-tokens | 8192 | Maximum embedding token size | | ||
| --input-file | ./book.txt | Initial input file | | ||
| --log-level | INFO | Logging level | | ||
|
||
## Quick Start | ||
|
||
1. Basic usage with default settings: | ||
```bash | ||
python ollama_lightrag_server.py | ||
``` | ||
|
||
2. Custom configuration: | ||
```bash | ||
python ollama_lightrag_server.py --model llama2:13b --port 8080 --working-dir ./custom_rag | ||
``` | ||
|
||
Make sure the models are installed in your lollms instance | ||
```bash | ||
python ollama_lightrag_server.py --model mistral-nemo:latest --embedding-model bge-m3 --embedding-dim 1024 | ||
``` | ||
|
||
## API Endpoints | ||
|
||
### Query Endpoints | ||
|
||
#### POST /query | ||
Query the RAG system with options for different search modes. | ||
|
||
```bash | ||
curl -X POST "http://localhost:9621/query" \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"query": "Your question here", "mode": "hybrid"}' | ||
``` | ||
|
||
#### POST /query/stream | ||
Stream responses from the RAG system. | ||
|
||
```bash | ||
curl -X POST "http://localhost:9621/query/stream" \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"query": "Your question here", "mode": "hybrid"}' | ||
``` | ||
|
||
### Document Management Endpoints | ||
|
||
#### POST /documents/text | ||
Insert text directly into the RAG system. | ||
|
||
```bash | ||
curl -X POST "http://localhost:9621/documents/text" \ | ||
-H "Content-Type: application/json" \ | ||
-d '{"text": "Your text content here", "description": "Optional description"}' | ||
``` | ||
|
||
#### POST /documents/file | ||
Upload a single file to the RAG system. | ||
|
||
```bash | ||
curl -X POST "http://localhost:9621/documents/file" \ | ||
-F "file=@/path/to/your/document.txt" \ | ||
-F "description=Optional description" | ||
``` | ||
|
||
#### POST /documents/batch | ||
Upload multiple files at once. | ||
|
||
```bash | ||
curl -X POST "http://localhost:9621/documents/batch" \ | ||
-F "files=@/path/to/doc1.txt" \ | ||
-F "files=@/path/to/doc2.txt" | ||
``` | ||
|
||
#### DELETE /documents | ||
Clear all documents from the RAG system. | ||
|
||
```bash | ||
curl -X DELETE "http://localhost:9621/documents" | ||
``` | ||
|
||
### Utility Endpoints | ||
|
||
#### GET /health | ||
Check server health and configuration. | ||
|
||
```bash | ||
curl "http://localhost:9621/health" | ||
``` | ||
|
||
## Development | ||
|
||
### Running in Development Mode | ||
|
||
```bash | ||
uvicorn ollama_lightrag_server:app --reload --port 9621 | ||
``` | ||
|
||
### API Documentation | ||
|
||
When the server is running, visit: | ||
- Swagger UI: http://localhost:9621/docs | ||
- ReDoc: http://localhost:9621/redoc | ||
|
||
|
||
## License | ||
|
||
This project is licensed under the MIT License - see the LICENSE file for details. | ||
|
||
## Acknowledgments | ||
|
||
- Built with [FastAPI](https://fastapi.tiangolo.com/) | ||
- Uses [LightRAG](https://github.com/HKUDS/LightRAG) for document processing | ||
- Powered by [LoLLMS](https://lollms.ai/) for LLM inference |
Oops, something went wrong.