Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

添加查询时使用embedding缓存功能 #406

Merged
merged 3 commits into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -596,6 +596,7 @@ if __name__ == "__main__":
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
| **addon\_params** | `dict` | Additional parameters, e.g., `{"example_number": 1, "language": "Simplified Chinese"}`: sets example limit and output language | `example_number: all examples, language: English` |
| **convert\_response\_to\_json\_func** | `callable` | Not used | `convert_response_to_json` |
| **embedding\_cache\_config** | `dict` | Configuration for embedding cache. Includes `enabled` (bool) to toggle cache and `similarity_threshold` (float) for cache retrieval | `{"enabled": False, "similarity_threshold": 0.95}` |

## API Server Implementation

Expand Down
112 changes: 112 additions & 0 deletions examples/lightrag_openai_compatible_demo_embedding_cache.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np

WORKING_DIR = "./dickens"

if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)


async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs,
)


async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embedding-1-large-query",
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
)


async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim


# function test
async def test_funcs():
result = await llm_model_func("How are you?")
print("llm_model_func: ", result)

result = await embedding_func(["How are you?"])
print("embedding_func: ", result)


# asyncio.run(test_funcs())


async def main():
try:
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")

rag = LightRAG(
working_dir=WORKING_DIR,
embedding_cache_config={
"enabled": True,
"similarity_threshold": 0.90,
},
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=8192,
func=embedding_func,
),
)

with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())

# Perform naive search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)

# Perform local search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)

# Perform global search
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global"),
)
)

# Perform hybrid search
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid"),
)
)
except Exception as e:
print(f"An error occurred: {e}")


if __name__ == "__main__":
asyncio.run(main())
5 changes: 4 additions & 1 deletion lightrag/lightrag.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,10 @@ class LightRAG:
working_dir: str = field(
default_factory=lambda: f"./lightrag_cache_{datetime.now().strftime('%Y-%m-%d-%H:%M:%S')}"
)

# Default not to use embedding cache
embedding_cache_config: dict = field(
default_factory=lambda: {"enabled": False, "similarity_threshold": 0.95}
)
kv_storage: str = field(default="JsonKVStorage")
vector_storage: str = field(default="NanoVectorDBStorage")
graph_storage: str = field(default="NetworkXStorage")
Expand Down
Loading
Loading