Skip to content

HeunSeungLim/GLS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 

Repository files navigation

GLS

GRAVITATED LATENT SPACE LOSS (GLS) GENERATED BY METRIC TENSOR FOR HIGH-DYNAMIC RANGE IMAGING

Heunseung Lim, Jungkyoo Shin, Hyoungki Choi, Dohoon Kim, Eunwoo Kim, and Joonki Paik. 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Requirements

  • Python 3.8
  • PyTorch 1.9.1
  • MATLAB (for data preparation)

Usage

Data preparation

  1. Download data from [dataset]
  2. Create data using the Matlab executable located in './GeneralH5Data/PrepareData.m'. AHDR) *(GenerH5data folders from AHDR)

Testing

  1. Install this repository and the required packages. A pretrained model is in ./trained-model.
  2. Prepare dataset.
    1. Download from [dataset]
    2. Import and test the image based on the file in the test-flow.txt file.
    3. Create and test a testing file using the file in the AHDR) Github link './GeneralH5Data/PrepareData.m'
  3. Run python script_testing.py files.

Training

  1. Prepare dataset.
  1. Download dataset.
  2. Similar to testing, create training-only data and learn using the 'script_training.py' file. Hyperparameters must be adjusted.

Pre-trained model download (.pkl)

Citation

If you use this code for your research, please cite our paper.

@INPROCEEDINGS{10223189,
  author={Lim, Heunseung and Shin, Joongchol and Choi, Jinsol and Paik, Joonki},
  booktitle={2023 IEEE International Conference on Image Processing (ICIP)}, 
  title={Dynamic Range Transformer (DRT): Learning Enhanced Log-Perceptual Information with Swin-Fourier Convolution Network for HDR Imaging}, 
  year={2023},
  volume={},
  number={},
  pages={3040-3044},
  keywords={Training;Image sensors;Image color analysis;Convolution;Neural networks;Lighting;Dynamic range;high dynamic range;transformer;log-Euclidean metric},
  doi={10.1109/ICIP49359.2023.10223189}}


@article{yan2021dual,
  title={Dual-attention-guided network for ghost-free high dynamic range imaging},
  author={Yan, Qingsen and Gong, Dong and Shi, Javen Qinfeng and van den Hengel, Anton and Shen, Chunhua and Reid, Ian and Zhang, Yanning},
  journal={International Journal of Computer Vision},
  pages={1--19},
  year={2021},
  publisher={Springer}
}
@article{yan2019attention,
  title={Attention-guided Network for Ghost-free High Dynamic Range Imaging},
  author={Yan, Qingsen and Gong, Dong and Shi, Qinfeng and Hengel, Anton van den and Shen, Chunhua and Reid, Ian and Zhang, Yanning},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
  pages={1751-1760}
}

Code

Code modified from [AHDR] https://github.com/qingsenyangit/AHDRNet, thanks to Qingsen Yan.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published