Skip to content

HugoZHL/MEVI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[NeurIPS 2023] Model-enhanced Vector Index (Paper)

Environment

[Option 1] Create conda environment:

conda env create -f environment.yml
conda activate mevi

[Option 2] Use docker:

docker pull hugozhl/nci:latest

MSMARCO Passage

Data Process

[1] Download and preprocess:

bash dataprocess/msmarco_passage/download_data.sh
python dataprocess/msmarco_passage/prepare_origin.py \
	--data_dir data/marco --origin

[2] Tokenize documents:

# tokenize for T5-ANCE and AR2

# T5-ANCE
python dataprocess/msmarco_passage/prepare_passage_tokenized.py \
	--output_dir data/marco/ance \
	--document_path data/marco/raw/corpus.tsv \
	--dataset marco --model ance
rm data/marco/ance/all_document_indices_*.pkl
rm data/marco/ance/all_document_tokens_*.bin
rm data/marco/ance/all_document_masks_*.bin

# AR2
python dataprocess/msmarco_passage/prepare_passage_tokenized.py \
	--output_dir data/marco/ar2 \
	--document_path data/marco/raw/corpus.tsv \
	--dataset marco --model ar2
rm data/marco/ar2/all_document_indices_*.pkl
rm data/marco/ar2/all_document_tokens_*.bin
rm data/marco/ar2/all_document_masks_*.bin

[3] Query generation for augmentation:

We used the docT5query checkpoint as in NCI. The QG data is only for training.

Please download the finetuned docT5query ckpt to data/marco/ckpts/doc2query-t5-base-msmarco

# MUST download the finetuned docT5query ckpt before running the scripts
python dataprocess/msmarco_passage/doc2query.py --data_dir data/marco
# if the qg data has bad quality, e.g. empty query or many duplicate queries, add another script below
python dataprocess/msmarco_passage/complement_qg10.py --data_dir data/marco # Optional

[4] Generate document embeddings and construct RQ

For T5-ANCE, please download T5-ANCE checkpoint to data/marco/ckpts/t5-ance.

For AR2, please download AR2 checkpoint to data/marco/ckpts/ar2g_marco_finetune.pkl and coCondenser checkpoint to data/marco/ckpts/co-condenser-marco-retriever

# MUST download the checkpoints before running the scripts
export DOCUMENT_ENCODER=ance
# export DOCUMENT_ENCODER=ar2 # use this line for ar2
bash MEVI/marco_generate_embedding_n_rq.sh

Training

Train the RQ-based NCI.

export DOCUMENT_ENCODER=ance
# export DOCUMENT_ENCODER=ar2 # use this line for ar2
export WANDB_TOKEN="your wandb token"
bash MEVI/marco_train_nci_rq.sh

Twin-tower Model Evaluation

First generate query embeddings.

# for T5-ANCE
python MEVI/generate.py \
	--query_file data/marco/origin/dev_mevi_dedup.tsv \
	--model_path data/marco/ckpts/t5-ance \
	--tokenizer_path data/marco/ckpts/t5-ance \
	--query_embedding_path data/marco/ance/query_emb.bin \
	--gpus 0,1,2,3,4,5,6,7 --gen_query

# for AR2
python MEVI/generate.py \
	--query_file data/marco/origin/dev_mevi_dedup.tsv \
	--model_path data/marco/ckpts/ar2g_marco_finetune.pkl \
	--tokenizer_path bert-base-uncased \
	--query_embedding_path data/marco/ar2/query_emb.bin \
	--gpus 0,1,2,3,4,5,6,7 --gen_query

Then use faiss for ANN search.

# for T5-ANCE; if for AR2, change the ance directory to ar2 directory
python MEVI/faiss_search.py \
	--query_path data/marco/ance/query_emb.bin \
	--doc_path data/marco/ance/docemb.bin \
	--output_path data/marco/ance/hnsw256.txt \
	--raw_query_path data/marco/origin/dev_mevi_dedup.tsv \
	--param HNSW256

Sequence-to-sequence Model Evaluation

Please download our checkpoint for MSMARCO Passage or train from scratch before evaluation, and put the checkpoint in data/marco/ckpts. If using the downloaded checkpoint, please also download the corresponding RQ files.

# MUST download or train a ckpt before running the scripts
export DOCUMENT_ENCODER=ance
# export DOCUMENT_ENCODER=ar2 # use this line for ar2
bash MEVI/marco_eval_nci_rq.sh

Ensemble

Ensemble the results from the twin-tower model and the sequence-to-sequence model.

export DOCUMENT_ENCODER=ance
# export DOCUMENT_ENCODER=ar2 # use this line for ar2
bash MEVI/marco_ensemble.sh

Natural Questions (DPR version)

Data Process

[1] Download and preprocess:

bash dataprocess/NQ_dpr/download_data.sh
python dataprocess/NQ_dpr/preprocess.py --data_dir data/nq_dpr

[2] Tokenize documents:

# use AR2
python dataprocess/NQ_dpr/tokenize_passage_ar2.py \
	--output_dir data/nq_dpr \
	--document_path data/nq_dpr/corpus.tsv
rm data/nq_dpr/all_document_indices_*.pkl
rm data/nq_dpr/all_document_tokens_*.bin
rm data/nq_dpr/all_document_masks_*.bin

[3] Query generation for augmentation:

We used the docT5query checkpoint as in NCI. The QG data is only for training. Please refer to the QG section for MSMARCO Passage.

# download finetuned docT5query ckpt to data/marco/ckpts/doc2query-t5-base-msmarco
python dataprocess/NQ_dpr/doc2query.py \
	--data_dir data/nq_dpr --n_gen_query 1 \
	--ckpt_path data/marco/ckpts/doc2query-t5-base-msmarco

[4] Generate document embeddings and construct RQ

Please download AR2 checkpoint to data/marco/ckpts/ar2g_nq_finetune.pkl and ERNIE checkpoint to data/marco/ckpts/ernie-2.0-base-en

# MUST download the checkpoints before running the scripts
bash MEVI/nqdpr_generate_embedding_n_rq.sh

[5] Tokenize query

Since NQ has too many augmented queries, to eliminate runtime memory usage, we tokenize query to enable memmap.

python dataprocess/NQ_dpr/tokenize_query.py \
	--output_dir data/nq_dpr \
	--tok_train 1 --tok_corpus 1 --tok_qg 1

[6] Get answers

We sort the answers for fast evaluation. (Time-consuming! Please download the processed binary files if necessary.)

python dataprocess/NQ_dpr/get_answers.py \
	--data_dir data/nq_dpr \
	--dev 1 --test 1
python dataprocess/NQ_dpr/get_inverse_answers.py \
	--data_dir data/nq_dpr \
	--dev 1 --test 1

Training

Train the RQ-based NCI.

export WANDB_TOKEN="your wandb token"
bash MEVI/nqdpr_train_nci_rq.sh

Twin-tower Model Evaluation

First generate query embeddings.

python MEVI/generate.py \
	--query_file data/nq_dpr/nq-test.qa.csv \
	--model_path data/marco/ckpts/ar2g_nq_finetune.pkl \
	--tokenizer_path bert-base-uncased \
	--query_embedding_path data/nq_dpr/query_emb.bin \
	--gpus 0,1,2,3,4,5,6,7 --gen_query

Then use faiss for ANN search.

python MEVI/faiss_search.py \
	--query_path data/nq_dpr/query_emb.bin \
	--doc_path data/nq_dpr/docemb.bin \
	--output_path data/nq_dpr/hnsw256.txt \
	--raw_query_path data/nq_dpr/nq-test.qa.csv \
	--param HNSW256

Sequence-to-sequence Model Evaluation

Please download our checkpoint for NQ or train from scratch before evaluation, and put the checkpoint in data/marco/ckpts. If using the downloaded checkpoint, please also download the corresponding RQ files.

# MUST download or train a ckpt before running the scripts
bash MEVI/nqdpr_eval_nci_rq.sh

Ensemble

Ensemble the results from the twin-tower model and the sequence-to-sequence model.

bash MEVI/nqdpr_ensemble.sh

Citation

If you find this work useful, please cite our paper.

Acknowledgement

We learned a lot and borrowed some codes from the following projects when building MEVI.

About

[NeurIPS 2023] Model-enhanced Vector Index

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published