Implementation of the paper “RGB-T Tracking via Multi-Modal Mutual Prompt Learning”
conda create -n mplt python=3.8
conda activate mplt
bash install.sh
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
Put the tracking datasets in ./data
. It should look like:
${PROJECT_ROOT}
-- data
-- lasher
|-- trainingset
|-- testingset
|-- trainingsetList.txt
|-- testingsetList.txt
...
Download SOT pretrained weights and put them under $PROJECT_ROOT$/pretrained_models
.
python tracking/train.py --script mplt_track --config vitb_256_mplt_32x1_1e4_lasher_15ep_sot --save_dir ./output/vitb_256_mplt_32x1_1e4_lasher_15ep_sot --mode multiple --nproc_per_node 4
Replace --config
with the desired model config under experiments/mplt_track
.
Put the checkpoint into $PROJECT_ROOT$/output/config_name/...
or modify the checkpoint path in testing code.
python tracking/test.py mplt_track vitb_256_mplt_32x1_1e4_lasher_15ep_sot --dataset_name lasher_test --threads 6 --num_gpus 1
python tracking/analysis_results.py --tracker_name mplt_track --tracker_param vitb_256_mplt_32x1_1e4_lasher_15ep_sot --dataset_name lasher_test
Model | Backbone | Pretraining | Precision | Success | FPS | Checkpoint | Raw Result
-MPLT-|-ViT-Base-|-----SOT-----|----72.0----|---57.1---|--22.8--| download | download
Our project is developed upon OSTrack. Thanks for their contributions which help us to quickly implement our ideas.
If our work is useful for your research, please consider cite.