Skip to content

Commit

Permalink
Merge branch 'develop' into hdf5_problem_obj_warn
Browse files Browse the repository at this point in the history
  • Loading branch information
dweindl authored Jan 15, 2024
2 parents 93b37ec + ebdf99c commit 8490233
Show file tree
Hide file tree
Showing 56 changed files with 3,051 additions and 1,624 deletions.
13 changes: 7 additions & 6 deletions .github/CODEOWNERS
Validating CODEOWNERS rules …
Original file line number Diff line number Diff line change
Expand Up @@ -3,25 +3,26 @@
# default owners
* @ICB-DCM/pypesto-maintainers

/doc/example/censored.ipynb @Doresic
/doc/example/censored_data.ipynb @Doresic
/doc/example/hdf5_storage.ipynb @PaulJonasJost
/doc/example/hierarchical.ipynb @dilpath @dweindl
/doc/example/julia.ipynb @PaulJonasJost
/doc/example/model_selection.ipynb @dilpath
/doc/example/nonlinear_monotone.ipynb @Doresic
/doc/example/ordinal.ipynb @Doresic
/doc/example/ordinal_data.ipynb @Doresic
/doc/example/petab_import.ipynb @dweindl @FFroehlich
/doc/example/relative_data.ipynb @dilpath @dweindl
/doc/example/sampler_study.ipynb @dilpath
/doc/example/sampling_diagnostics.ipynb @dilpath
/doc/example/semiquantitative_data.ipynb @Doresic
/doc/example/store.ipynb @PaulJonasJost
/doc/example/synthetic_data.ipynb @dilpath
/docker/ @dweindl
/pypesto/engine/ @PaulJonasJost
/pypesto/engine/mpi_pool.py @PaulJonasJost
/pypesto/ensemble/ @dilpath @PaulJonasJost
/pypesto/hierarchical/ @dweindl @Doresic
/pypesto/hierarchical/optimal_scaling_approach/ @Doresic
/pypesto/hierarchical/spline_approximation/ @Doresic
/pypesto/hierarchical/ordinal/ @Doresic
/pypesto/hierarchical/relative/ @dweindl @Doresic
/pypesto/hierarchical/semiquantitative/ @Doresic
/pypesto/history/ @PaulJonasJost
/pypesto/objective/ @PaulJonasJost
/pypesto/objective/amici/ @dweindl @FFroehlich
Expand Down
5 changes: 3 additions & 2 deletions doc/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,9 @@ API reference
pypesto.engine
pypesto.ensemble
pypesto.hierarchical
pypesto.hierarchical.optimal_scaling
pypesto.hierarchical.spline_approximation
pypesto.hierarchical.ordinal
pypesto.hierarchical.relative
pypesto.hierarchical.semiquantitative
pypesto.history
pypesto.logging
pypesto.objective
Expand Down
8 changes: 4 additions & 4 deletions doc/example.rst
Original file line number Diff line number Diff line change
Expand Up @@ -51,10 +51,10 @@ Algorithms and features
example/store.ipynb
example/model_selection.ipynb
example/julia.ipynb
example/hierarchical.ipynb
example/ordinal.ipynb
example/censored.ipynb
example/nonlinear_monotone.ipynb
example/relative_data.ipynb
example/ordinal_data.ipynb
example/censored_data.ipynb
example/semiquantitative_data.ipynb

Application examples
--------------------
Expand Down
24 changes: 15 additions & 9 deletions doc/example/censored.ipynb → doc/example/censored_data.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -115,10 +115,15 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"For censored measurements, the `measurement` column will be ignored. For the `Ybar` observable we didn't specify a measurement type, so those will be used as quantitative.\n",
"\n",
"For censored measurements, the `measurement` column will be ignored. For the `Ybar` observable we didn't specify a measurement type, so those will be used as quantitative."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Note on inclusion of additional data types:\n",
"It is possible to include observables with different types of data to the same `petab_problem`. Refer to the notebooks on using [nonlinear-monotone data](nonlinear_monotone.ipynb) and [ordinal data](ordinal.ipynb) for details on integration of other data types. Additionally, as shown in this example, if the `measurementType` column is left empty for all measurements of an observable, the observable will be treated as quantitative."
"It is possible to include observables with different types of data to the same `petab_problem`. Refer to the notebooks on using [semiquantitative data](semiquantitative_data.ipynb), [relative data](relative_data.ipynb) and [ordinal data](ordinal_data.ipynb) for details on integration of other data types. If the `measurementType` column is left empty for all measurements of an observable, the observable will be treated as quantitative."
]
},
{
Expand All @@ -136,9 +141,9 @@
"source": [
"Now when we construct the `objective`, it will construct all objects of the optimal scaling inner optimization:\n",
"\n",
"- `OptimalScalingInnerSolver`\n",
"- `OptimalScalingAmiciCalculator`\n",
"- `OptimalScalingProblem`\n",
"- `OrdinalInnerSolver`\n",
"- `OrdinalCalculator`\n",
"- `OrdinalProblem`\n",
"\n",
"As there are no censored data specific inner options, we will pass none to the constructor."
]
Expand All @@ -149,15 +154,16 @@
"metadata": {},
"outputs": [],
"source": [
"objective = importer.create_objective()"
"model = importer.create_model(verbose=False)\n",
"objective = importer.create_objective(model=model)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's construct the pyPESTO problem and optimizer. We're going to use a gradint-based optimizer for a faster optimization, but gradient-free optimizers can be used in the same way:"
"Now let's construct the pyPESTO problem and optimizer. We're going to use a gradient-based optimizer for a faster optimization, but gradient-free optimizers can be used in the same way:"
]
},
{
Expand All @@ -168,7 +174,7 @@
"source": [
"problem = importer.create_problem(objective)\n",
"\n",
"engine = pypesto.engine.SingleCoreEngine()\n",
"engine = pypesto.engine.MultiProcessEngine(n_procs=3)\n",
"\n",
"optimizer = optimize.ScipyOptimizer(\n",
" method=\"L-BFGS-B\",\n",
Expand Down

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

11 changes: 11 additions & 0 deletions doc/example/example_semiquantitative/example_semiquantitative.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
format_version: 1
parameter_file: parameters_example_semiquantitative.tsv
problems:
- condition_files:
- experimentalCondition_example_semiquantitative.tsv
measurement_files:
- measurementData_example_semiquantitative.tsv
observable_files:
- observables_example_semiquantitative.tsv
sbml_files:
- model_example_semiquantitative.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
format_version: 1
parameter_file: parameters_example_semiquantitative.tsv
problems:
- condition_files:
- experimentalCondition_example_semiquantitative.tsv
measurement_files:
- measurementData_example_semiquantitative_linear.tsv
observable_files:
- observables_example_semiquantitative.tsv
sbml_files:
- model_example_semiquantitative.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
observableId preequilibrationConditionId simulationConditionId measurement time observableParameters noiseParameters observableTransformation noiseDistribution measurementType
Activity Inhibitor_0 7.68240348241022 5 1 lin normal semiquantitative
Activity Inhibitor_3 7.87610717856578 5 1 lin normal semiquantitative
Activity Inhibitor_10 8.31458694362777 5 1 lin normal semiquantitative
Activity Inhibitor_25 9.13091469917684 5 1 lin normal semiquantitative
Activity Inhibitor_35 8.07849405536742 5 1 lin normal semiquantitative
Activity Inhibitor_50 5.45211611461129 5 1 lin normal semiquantitative
Activity Inhibitor_75 2.69874576106127 5 1 lin normal semiquantitative
Activity Inhibitor_100 1.673154390125 5 1 lin normal semiquantitative
Activity Inhibitor_300 0.392886259997627 5 1 lin normal semiquantitative
Ybar Inhibitor_0 0 5 1 lin normal semiquantitative
Ybar Inhibitor_3 0.744411111757651 5 1 lin normal semiquantitative
Ybar Inhibitor_10 2.31052444293466 5 1 lin normal semiquantitative
Ybar Inhibitor_25 4.23805611211676 5 1 lin normal semiquantitative
Ybar Inhibitor_35 4.6428594963941 5 1 lin normal semiquantitative
Ybar Inhibitor_50 4.83287946040586 5 1 lin normal semiquantitative
Ybar Inhibitor_75 4.89868421035517 5 1 lin normal semiquantitative
Ybar Inhibitor_100 4.91379066100035 5 1 lin normal semiquantitative
Ybar Inhibitor_300 4.92900825318423 5 1 lin normal semiquantitative
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
observableId preequilibrationConditionId simulationConditionId measurement time observableParameters noiseParameters observableTransformation noiseDistribution measurementType
Activity Inhibitor_0 15.24029495 5 1 lin normal semiquantitative
Activity Inhibitor_3 15.97660789 5 1 lin normal semiquantitative
Activity Inhibitor_10 17.89265379 5 1 lin normal semiquantitative
Activity Inhibitor_25 23.18714697 5 1 lin normal semiquantitative
Activity Inhibitor_35 16.81210375 5 1 lin normal semiquantitative
Activity Inhibitor_50 9.17312936 5 1 lin normal semiquantitative
Activity Inhibitor_75 4.15092812 5 1 lin normal semiquantitative
Activity Inhibitor_100 2.53355252 5 1 lin normal semiquantitative
Activity Inhibitor_300 0.5896329 5 1 lin normal semiquantitative
Ybar Inhibitor_0 0 5 1 lin normal semiquantitative
Ybar Inhibitor_3 0.05999885 5 1 lin normal semiquantitative
Ybar Inhibitor_10 0.19999376 5 1 lin normal semiquantitative
Ybar Inhibitor_25 0.49904277 5 1 lin normal semiquantitative
Ybar Inhibitor_35 0.65916874 5 1 lin normal semiquantitative
Ybar Inhibitor_50 0.81495435 5 1 lin normal semiquantitative
Ybar Inhibitor_75 0.91638297 5 1 lin normal semiquantitative
Ybar Inhibitor_100 0.94898071 5 1 lin normal semiquantitative
Ybar Inhibitor_300 0.98813045 5 1 lin normal semiquantitative
Loading

0 comments on commit 8490233

Please sign in to comment.