This document shows how to build and run a Falcon model in TensorRT-LLM on single GPU, single node multi-GPU, and multi-node multi-GPU.
The TensorRT-LLM Falcon implementation can be found in tensorrt_llm/models/falcon/model.py. The TensorRT-LLM Falcon example code is located in examples/falcon
. There is one main file:
convert_checkpoint.py
to convert a checkpoint from the HuggingFace (HF) Transformers format to the TensorRT-LLM format.
In addition, there are two shared files in the parent folder examples
for inference and evaluation:
../run.py
to run the inference on an input text;../summarize.py
to summarize the articles in the cnn_dailymail dataset.
- FP16
- BF16
- FP8
- FP8 KV CACHE
- Groupwise quantization (AWQ)
- Tensor Parallel
- STRONGLY TYPED
The next two sections describe how to convert the weights from the HuggingFace (HF) Transformers format to the TensorRT-LLM format.
Install the dependency packages and setup git-lfs
.
# Install dependencies
pip install -r requirements.txt
# Setup git-lfs
git lfs install
There are four HF checkpoints available. Use one of the following commands to fetch the checkpoint you are interested in. Follow the guides here https://huggingface.co/docs/transformers/main/en/model_doc/falcon.
# falcon-rw-1b
git clone https://huggingface.co/tiiuae/falcon-rw-1b falcon/rw-1b
# falcon-7b-instruct
git clone https://huggingface.co/tiiuae/falcon-7b-instruct falcon/7b-instruct
# falcon-40b-instruct
git clone https://huggingface.co/tiiuae/falcon-40b-instruct falcon/40b-instruct
# falcon-180b
git clone https://huggingface.co/tiiuae/falcon-180B falcon/180b
The convert_checkpoint.py
script converts HF weights to TensorRT-LLM checkpoints. The number of checkpoint files (in .safetensors format) is same to the number of GPUs used to run inference.
# falcon-rw-1b: single gpu, dtype float16
python3 convert_checkpoint.py --model_dir ./falcon/rw-1b \
--dtype float16 \
--output_dir ./falcon/rw-1b/trt_ckpt/fp16/1-gpu/
# falcon-7b-instruct: single gpu, dtype bfloat16
python3 convert_checkpoint.py --model_dir ./falcon/7b-instruct \
--dtype bfloat16 \
--output_dir ./falcon/7b-instruct/trt_ckpt/bf16/1-gpu/
# falcon-40b-instruct: 2-way tensor parallelism
python3 convert_checkpoint.py --model_dir ./falcon/40b-instruct \
--dtype bfloat16 \
--output_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp1/ \
--tp_size 2
# falcon-40b-instruct: 2-way tensor parallelism and 2-way pipeline parallelism
python3 convert_checkpoint.py --model_dir ./falcon/40b-instruct \
--dtype bfloat16 \
--output_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp2/ \
--tp_size 2 \
--pp_size 2
# falcon-180b: 8-way tensor parallelism, loading weights shard-by-shard
python3 convert_checkpoint.py --model_dir ./falcon/180b \
--dtype bfloat16 \
--output_dir ./falcon/180b/trt_ckpt/bf16/tp8-pp1/ \
--tp_size 8 \
--load_by_shard \
--workers 8
# falcon-180b: 4-way tensor parallelism and 2-way pipeline parallelism, loading weights shard-by-shard
python3 convert_checkpoint.py --model_dir ./falcon/180b \
--dtype bfloat16 \
--output_dir ./falcon/180b/trt_ckpt/bf16/tp4-pp2/ \
--tp_size 4 \
--pp_size 2 \
--load_by_shard \
--workers 8
Note that in order to use N-way tensor parallelism, the number of attention heads must be a multiple of N. For example, you can't configure 2-way tensor parallelism for falcon-7b or falcon-7b-instruct, because the number of attention heads is 71 (not divisible by 2).
The trtllm-build
command builds TensorRT-LLM engines from TensorRT-LLM checkpoints. The number of engine files is also same to the number of GPUs used to run inference.
Normally, the trtllm-build
command only requires a single GPU, but you can enable parallel building by passing the number of GPUs to the --workers
argument.
# falcon-rw-1b
trtllm-build --checkpoint_dir ./falcon/rw-1b/trt_ckpt/fp16/1-gpu/ \
--gemm_plugin float16 \
--output_dir ./falcon/rw-1b/trt_engines/fp16/1-gpu/
# falcon-7b-instruct
# Enabling --gpt_attention_plugin is necessary for rotary positional embedding (RoPE)
trtllm-build --checkpoint_dir ./falcon/7b-instruct/trt_ckpt/bf16/1-gpu/ \
--gemm_plugin bfloat16 \
--remove_input_padding enable \
--gpt_attention_plugin bfloat16 \
--output_dir ./falcon/7b-instruct/trt_engines/bf16/1-gpu/
# falcon-40b-instruct: 2-way tensor parallelism
trtllm-build --checkpoint_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp1/ \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--output_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp1/
# falcon-40b-instruct: 2-way tensor parallelism and 2-way pipeline parallelism
trtllm-build --checkpoint_dir ./falcon/40b-instruct/trt_ckpt/bf16/tp2-pp2/ \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--output_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp2/
# falcon-180b: 8-way tensor parallelism
trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/bf16/tp8-pp1/ \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--output_dir ./falcon/180b/trt_engines/bf16/tp8-pp1/ \
--workers 8
# falcon-180b: 4-way tensor parallelism and 2-way pipeline parallelism
trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/bf16/tp4-pp2/ \
--gemm_plugin bfloat16 \
--gpt_attention_plugin bfloat16 \
--output_dir ./falcon/180b/trt_engines/bf16/tp4-pp2/ \
--workers 8
If the engines are built successfully, you will see output like (falcon-rw-1b as the example):
......
[12/27/2023-03:46:29] [TRT] [I] Engine generation completed in 35.0677 seconds.
[12/27/2023-03:46:29] [TRT] [I] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 393 MiB, GPU 2699 MiB
[12/27/2023-03:46:29] [TRT] [I] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +2699, now: CPU 0, GPU 2699 (MiB)
[12/27/2023-03:46:29] [TRT] [I] [MemUsageStats] Peak memory usage during Engine building and serialization: CPU: 10624 MiB
[12/27/2023-03:46:29] [TRT-LLM] [I] Total time of building Unnamed Network 0: 00:00:36
[12/27/2023-03:46:31] [TRT-LLM] [I] Serializing engine to ./falcon/rw-1b/trt_engines/fp16/1-gpu/rank0.engine...
[12/27/2023-03:46:59] [TRT-LLM] [I] Engine serialized. Total time: 00:00:28
[12/27/2023-03:46:59] [TRT-LLM] [I] Total time of building all engines: 00:01:59
The ../summarize.py
script can run the built engines to summarize the articles from the
cnn_dailymail dataset.
# falcon-rw-1b
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/rw-1b \
--engine_dir ./falcon/rw-1b/trt_engines/fp16/1-gpu/
# falcon-7b-instruct
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/7b-instruct \
--engine_dir ./falcon/7b-instruct/trt_engines/bf16/1-gpu/
# falcon-40b-instruct: 2-way tensor parallelism
mpirun -n 2 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/40b-instruct \
--engine_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp1/
# falcon-40b-instruct: 2-way tensor parallelism and 2-way pipeline parallelism
mpirun -n 4 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/40b-instruct \
--engine_dir ./falcon/40b-instruct/trt_engines/bf16/tp2-pp2/
# falcon-180b: 8-way tensor parallelism
mpirun -n 8 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/180b \
--engine_dir ./falcon/180b/trt_engines/bf16/tp8-pp1/
# falcon-180b: 4-way tensor parallelism and 2-way pipeline parallelism
mpirun -n 8 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/180b \
--engine_dir ./falcon/180b/trt_engines/bf16/tp4-pp2/
If the engines are run successfully, you will see output like (falcon-rw-1b as the example):
......
[12/27/2023-03:57:02] [TRT-LLM] [I] TensorRT-LLM (total latency: 5.816917419433594 sec)
[12/27/2023-03:57:02] [TRT-LLM] [I] TensorRT-LLM beam 0 result
[12/27/2023-03:57:02] [TRT-LLM] [I] rouge1 : 15.061493342516243
[12/27/2023-03:57:02] [TRT-LLM] [I] rouge2 : 4.495335888974063
[12/27/2023-03:57:02] [TRT-LLM] [I] rougeL : 11.800002670828547
[12/27/2023-03:57:02] [TRT-LLM] [I] rougeLsum : 13.458777656925877
The examples below use the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process.
First make sure AMMO toolkit is installed (see examples/quantization/README.md)
Now quantize HF Falcon weights and export trtllm checkpoint.
# Quantize HF Falcon 180B checkpoint into FP8 and export trtllm checkpoint
python ../quantization/quantize.py --model_dir ./falcon/180b \
--dtype float16 \
--qformat fp8 \
--kv_cache_dtype fp8 \
--output_dir ./falcon/180b/trt_ckpt/fp8/tp8-pp1 \
--tp_size 8
# Build trtllm engines from the trtllm checkpoint
trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/fp8/tp8-pp1 \
--gemm_plugin float16 \
--strongly_typed \
--output_dir ./falcon/180b/trt_engines/fp8/tp8-pp1 \
--workers 8
# Run the summarization task
mpirun -n 8 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/180b \
--engine_dir ./falcon/180b/trt_engines/fp8/tp8-pp1
The examples below use the NVIDIA AMMO (AlgorithMic Model Optimization) toolkit for the model quantization process.
First make sure AMMO toolkit is installed (see examples/quantization/README.md)
Now quantize HF Falcon weights and export trtllm checkpoint.
# Quantize HF Falcon 180B checkpoint into INT4-AWQ and export trtllm checkpoint
python ../quantization/quantize.py --model_dir ./falcon/180b \
--dtype float16 \
--qformat int4_awq \
--output_dir ./falcon/180b/trt_ckpt/int4_awq/tp2 \
--tp_size 2
# Build trtllm engines from the trtllm checkpoint
trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/int4_awq/tp2 \
--gemm_plugin float16 \
--output_dir ./falcon/180b/trt_engines/int4_awq/tp2 \
--workers 2
# Run the summarization task
mpirun -n 2 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/180b \
--engine_dir ./falcon/180b/trt_engines/int4_awq/tp2
For Hopper GPUs, TRT-LLM also supports employing FP8 GEMM for accelerating linear layers. This mode is noted with w4a8_awq
for AMMO and TRT-LLM, in which both weights and activations are converted from W4A16 to FP8 for GEMM calculation.
Please make sure your system contains a Hopper GPU before trying the commands below.
# Quantize HF Falcon 180B checkpoint into W4A8-AWQ and export trtllm checkpoint
python ../quantization/quantize.py --model_dir ./falcon/180b \
--dtype float16 \
--qformat w4a8_awq \
--output_dir ./falcon/180b/trt_ckpt/w4a8_awq/tp2 \
--tp_size 2
# Build trtllm engines from the trtllm checkpoint
trtllm-build --checkpoint_dir ./falcon/180b/trt_ckpt/w4a8_awq/tp2 \
--gemm_plugin float16 \
--output_dir ./falcon/180b/trt_engines/w4a8_awq/tp2 \
--workers 2
# Run the summarization task
mpirun -n 2 --allow-run-as-root --oversubscribe \
python ../summarize.py --test_trt_llm \
--hf_model_dir ./falcon/180b \
--engine_dir ./falcon/180b/trt_engines/w4a8_awq/tp2
One may find the following message.
Traceback (most recent call last):
File "build.py", line 10, in <module>
from transformers import FalconConfig, FalconForCausalLM
File "<frozen importlib._bootstrap>", line 1039, in _handle_fromlist
File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1090, in __getattr__
value = getattr(module, name)
File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1089, in __getattr__
module = self._get_module(self._class_to_module[name])
File "/usr/local/lib/python3.8/dist-packages/transformers/utils/import_utils.py", line 1101, in _get_module
raise RuntimeError(
RuntimeError: Failed to import transformers.models.falcon.modeling_falcon because of the following error (look up to see its traceback):
It may be resolved by pinning the version of typing-extensions
package by 4.5.0
.
pip install typing-extensions==4.5.0