Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve performance for dpnp.diag() #1822

Merged
merged 5 commits into from
May 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 39 additions & 46 deletions dpnp/dpnp_iface_arraycreation.py
Original file line number Diff line number Diff line change
Expand Up @@ -866,9 +866,14 @@ def diag(v, /, k=0, *, device=None, usm_type=None, sycl_queue=None):
v : array_like
Input data, in any form that can be converted to an array. This
includes scalars, lists, lists of tuples, tuples, tuples of tuples,
tuples of lists, and ndarrays. If `v` is a 2-D array, return a copy of
its k-th diagonal. If `v` is a 1-D array, return a 2-D array with `v`
on the k-th diagonal.
tuples of lists, and ndarrays.
If `v` is a 1-D array, return a 2-D array with `v`
on the `k`-th diagonal.
If `v` is a 2-D array and is an instance of
{dpnp.ndarray, usm_ndarray}, then:
- If `device`, `usm_type`, and `sycl_queue` are set to their
default values, returns a read/write view of its k-th diagonal.
- Otherwise, returns a copy of its k-th diagonal.
k : int, optional
Diagonal in question. The default is 0. Use k > 0 for diagonals above
the main diagonal, and k < 0 for diagonals below the main diagonal.
Expand All @@ -894,79 +899,62 @@ def diag(v, /, k=0, *, device=None, usm_type=None, sycl_queue=None):
--------
:obj:`diagonal` : Return specified diagonals.
:obj:`diagflat` : Create a 2-D array with the flattened input as a diagonal.
:obj:`trace` : Return sum along diagonals.
:obj:`triu` : Return upper triangle of an array.
:obj:`tril` : Return lower triangle of an array.
:obj:`trace` : Return the sum along diagonals of the array.
:obj:`triu` : Upper triangle of an array.
:obj:`tril` : Lower triangle of an array.

Examples
--------
>>> import dpnp as np
>>> x0 = np.arange(9).reshape((3, 3))
>>> x0
>>> x = np.arange(9).reshape((3, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])

>>> np.diag(x0)
>>> np.diag(x)
array([0, 4, 8])
>>> np.diag(x0, k=1)
>>> np.diag(x, k=1)
array([1, 5])
>>> np.diag(x0, k=-1)
>>> np.diag(x, k=-1)
array([3, 7])

>>> np.diag(np.diag(x0))
>>> np.diag(np.diag(x))
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 8]])

Creating an array on a different device or with a specified usm_type

>>> x = np.diag(x0) # default case
>>> x, x.device, x.usm_type
>>> res = np.diag(x) # default case
>>> res, res.device, res.usm_type
(array([0, 4, 8]), Device(level_zero:gpu:0), 'device')

>>> y = np.diag(x0, device="cpu")
>>> y, y.device, y.usm_type
>>> res_cpu = np.diag(x, device="cpu")
>>> res_cpu, res_cpu.device, res_cpu.usm_type
(array([0, 4, 8]), Device(opencl:cpu:0), 'device')

>>> z = np.diag(x0, usm_type="host")
>>> z, z.device, z.usm_type
>>> res_host = np.diag(x, usm_type="host")
>>> res_host, res_host.device, res_host.usm_type
(array([0, 4, 8]), Device(level_zero:gpu:0), 'host')

vlad-perevezentsev marked this conversation as resolved.
Show resolved Hide resolved
"""

if not isinstance(k, int):
raise TypeError(f"An integer is required, but got {type(k)}")

v = dpnp.asarray(v, device=device, usm_type=usm_type, sycl_queue=sycl_queue)
v = dpnp.asanyarray(
vlad-perevezentsev marked this conversation as resolved.
Show resolved Hide resolved
v, device=device, usm_type=usm_type, sycl_queue=sycl_queue
)

init0 = max(0, -k)
init1 = max(0, k)
if v.ndim == 1:
size = v.shape[0] + abs(k)
m = dpnp.zeros(
(size, size),
dtype=v.dtype,
usm_type=v.usm_type,
sycl_queue=v.sycl_queue,
)
for i in range(v.shape[0]):
m[(init0 + i), init1 + i] = v[i]
return m
ret = dpnp.zeros_like(v, shape=(size, size))
ret.diagonal(k)[:] = v
return ret

if v.ndim == 2:
size = max(
0, min(v.shape[0], v.shape[0] + k, v.shape[1], v.shape[1] - k)
)
m = dpnp.zeros(
(size,),
dtype=v.dtype,
usm_type=v.usm_type,
sycl_queue=v.sycl_queue,
)
for i in range(size):
m[i] = v[(init0 + i), init1 + i]
return m
return v.diagonal(k)

raise ValueError("Input must be a 1-D or 2-D array.")

Expand Down Expand Up @@ -1008,9 +996,9 @@ def diagflat(v, /, k=0, *, device=None, usm_type=None, sycl_queue=None):

See Also
--------
:obj:`diag` : Return the extracted diagonal or constructed diagonal array.
:obj:`diagonal` : Return specified diagonals.
:obj:`trace` : Return sum along diagonals.
:obj:`dpnp.diag` : Extract a diagonal or construct a diagonal array.
:obj:`dpnp.diagonal` : Return specified diagonals.
:obj:`dpnp.trace` : Return sum along diagonals.

Examples
--------
Expand Down Expand Up @@ -1324,6 +1312,11 @@ def eye(
Parameter `like` is supported only with default value ``None``.
Otherwise, the function raises `NotImplementedError` exception.

See Also
--------
:obj:`dpnp.identity` : Return the identity array.
:obj:`dpnp.diag` : Extract a diagonal or construct a diagonal array.

Examples
--------
>>> import dpnp as np
Expand Down Expand Up @@ -2264,7 +2257,7 @@ def identity(
:obj:`dpnp.eye` : Return a 2-D array with ones on the diagonal and zeros
elsewhere.
:obj:`dpnp.ones` : Return a new array setting values to one.
:obj:`dpnp.diag` : Return diagonal 2-D array from an input 1-D array.
:obj:`dpnp.diag` : Extract a diagonal or construct a diagonal array.

Examples
--------
Expand Down
10 changes: 5 additions & 5 deletions tests/third_party/cupy/creation_tests/test_matrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,35 +27,35 @@ def test_diag3(self, xp):
def test_diag_extraction_from_nested_list(self, xp):
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
r = xp.diag(a, 1)
self.assertIsInstance(r, xp.ndarray)
assert isinstance(r, xp.ndarray)
return r

@testing.numpy_cupy_array_equal()
def test_diag_extraction_from_nested_tuple(self, xp):
a = ((1, 2, 3), (4, 5, 6), (7, 8, 9))
r = xp.diag(a, -1)
self.assertIsInstance(r, xp.ndarray)
assert isinstance(r, xp.ndarray)
return r

@testing.numpy_cupy_array_equal()
def test_diag_construction(self, xp):
a = testing.shaped_arange((3,), xp)
r = xp.diag(a)
self.assertIsInstance(r, xp.ndarray)
assert isinstance(r, xp.ndarray)
return r

@testing.numpy_cupy_array_equal()
def test_diag_construction_from_list(self, xp):
a = [1, 2, 3]
r = xp.diag(a)
self.assertIsInstance(r, xp.ndarray)
assert isinstance(r, xp.ndarray)
return r

@testing.numpy_cupy_array_equal()
def test_diag_construction_from_tuple(self, xp):
a = (1, 2, 3)
r = xp.diag(a)
self.assertIsInstance(r, xp.ndarray)
assert isinstance(r, xp.ndarray)
return r

def test_diag_scaler(self):
Expand Down
Loading