Skip to content

Latest commit

 

History

History
65 lines (47 loc) · 2.31 KB

README.md

File metadata and controls

65 lines (47 loc) · 2.31 KB

README

What is this repository for?

@inproceedings{FedCSIS201756,
	author={Ivona Tautkute and Aleksandra Możejko and Wojciech Stokowiec and Tomasz Trzciński and Łukasz Brocki and Krzysztof Marasek,},
	pages={1275--1282},
	title={What Looks Good with my Sofa: Multimodal Search Engine for Interior Design},
	booktitle={Proceedings of the 2017 Federated Conference on Computer Science and Information Systems},
	year={2017},
	editor={M. Ganzha and L. Maciaszek and M. Paprzycki},
	publisher={IEEE},
	doi={10.15439/2017F56},
	url={http://dx.doi.org/10.15439/2017F56},
	volume={11},
	series={Annals of Computer Science and Information Systems}
}

Dependencies

  • Installation of Open CV 2
  • Python 3

Installation

Docker

  • Build docker container docker build -t container-name .
  • Run on port 3000 docker run -p 3000:3000 -it container-name

Locally

Web app

  • Start on localhost by running run.py

  • Configuration of Flask app interface: app/web_interface.py

Notebooks

  • Results for IKEA Dataset - contains accuracy calculations for visual search, recall curve on IKEA dataset
  • Interior style dataset benchmark - contains accuracy calculations for visual and textual search on Style dataset
  • Results for calculating similarity - contains similarity metric calculations for different text queries and objects in IKEA dataset

Visual Search

  • Visual search functions: finder.py
  • Visual feature extraction: cnn_feature_extraction.py
  • Functions for YOLO object detection: detect_objects.py
  • Model parameters: parameters.py

Textual Search

  • Query transformation using SVD and finding n-nearest neigbhours: search_engine.py
  • Word2vec and Countvect "training": training.py
  • tSNE visualization: embedding.py
  • blender.py - leftover
  • Query transformation using LSTM is in the jupyter notebook sent on style-search channel on slack