Skip to content

Complementary code supporting FEDCSIS MIDI 2017 paper "What Looks Good with my Sofa: Multimodal Search Engine for Interior Design" by Ivona Tautkute, Aleksandra Możejko, Wojciech Stokowiec, Tomasz Trzciński, Łukasz Brocki and Krzysztof Marasek

Notifications You must be signed in to change notification settings

IvonaTau/style-search

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

What is this repository for?

@inproceedings{FedCSIS201756,
	author={Ivona Tautkute and Aleksandra Możejko and Wojciech Stokowiec and Tomasz Trzciński and Łukasz Brocki and Krzysztof Marasek,},
	pages={1275--1282},
	title={What Looks Good with my Sofa: Multimodal Search Engine for Interior Design},
	booktitle={Proceedings of the 2017 Federated Conference on Computer Science and Information Systems},
	year={2017},
	editor={M. Ganzha and L. Maciaszek and M. Paprzycki},
	publisher={IEEE},
	doi={10.15439/2017F56},
	url={http://dx.doi.org/10.15439/2017F56},
	volume={11},
	series={Annals of Computer Science and Information Systems}
}

Dependencies

  • Installation of Open CV 2
  • Python 3

Installation

Docker

  • Build docker container docker build -t container-name .
  • Run on port 3000 docker run -p 3000:3000 -it container-name

Locally

Web app

  • Start on localhost by running run.py

  • Configuration of Flask app interface: app/web_interface.py

Notebooks

  • Results for IKEA Dataset - contains accuracy calculations for visual search, recall curve on IKEA dataset
  • Interior style dataset benchmark - contains accuracy calculations for visual and textual search on Style dataset
  • Results for calculating similarity - contains similarity metric calculations for different text queries and objects in IKEA dataset

Visual Search

  • Visual search functions: finder.py
  • Visual feature extraction: cnn_feature_extraction.py
  • Functions for YOLO object detection: detect_objects.py
  • Model parameters: parameters.py

Textual Search

  • Query transformation using SVD and finding n-nearest neigbhours: search_engine.py
  • Word2vec and Countvect "training": training.py
  • tSNE visualization: embedding.py
  • blender.py - leftover
  • Query transformation using LSTM is in the jupyter notebook sent on style-search channel on slack

About

Complementary code supporting FEDCSIS MIDI 2017 paper "What Looks Good with my Sofa: Multimodal Search Engine for Interior Design" by Ivona Tautkute, Aleksandra Możejko, Wojciech Stokowiec, Tomasz Trzciński, Łukasz Brocki and Krzysztof Marasek

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published