- Code suplementing FEDCSIS MIDI 2017 paper "What Looks Good with my Sofa: Multimodal Search Engine for Interior Design" by Ivona Tautkute, Aleksandra Możejko, Wojciech Stokowiec, Tomasz Trzciński, Łukasz Brocki and Krzysztof Marasek
@inproceedings{FedCSIS201756,
author={Ivona Tautkute and Aleksandra Możejko and Wojciech Stokowiec and Tomasz Trzciński and Łukasz Brocki and Krzysztof Marasek,},
pages={1275--1282},
title={What Looks Good with my Sofa: Multimodal Search Engine for Interior Design},
booktitle={Proceedings of the 2017 Federated Conference on Computer Science and Information Systems},
year={2017},
editor={M. Ganzha and L. Maciaszek and M. Paprzycki},
publisher={IEEE},
doi={10.15439/2017F56},
url={http://dx.doi.org/10.15439/2017F56},
volume={11},
series={Annals of Computer Science and Information Systems}
}
- Installation of Open CV 2
- Python 3
- Build docker container
docker build -t container-name .
- Run on port 3000
docker run -p 3000:3000 -it container-name
- Download YOLO weights (https://drive.google.com/open?id=0BywyiovWX-UkeGNxdkxKdDMtdDg)
- Install Open CV and requirements from
requirements.txt
- Run the app
python3 run.py
-
Start on localhost by running run.py
-
Configuration of Flask app interface: app/web_interface.py
- Results for IKEA Dataset - contains accuracy calculations for visual search, recall curve on IKEA dataset
- Interior style dataset benchmark - contains accuracy calculations for visual and textual search on Style dataset
- Results for calculating similarity - contains similarity metric calculations for different text queries and objects in IKEA dataset
- Visual search functions: finder.py
- Visual feature extraction: cnn_feature_extraction.py
- Functions for YOLO object detection: detect_objects.py
- Model parameters: parameters.py
- Query transformation using SVD and finding n-nearest neigbhours: search_engine.py
- Word2vec and Countvect "training": training.py
- tSNE visualization: embedding.py
- blender.py - leftover
- Query transformation using LSTM is in the jupyter notebook sent on style-search channel on slack