We use Anonymous Github for the double-blind reviewing policy.
-
python 3.6.13
-
cuda10.0.130
-
pytorch 1.8.0
-
ICEWS14 and ICEWS05-15: Learning Sequence Encoders for Temporal Knowledge Graph Completion
-
Wikidata12k: HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding
For ICEWS14 and ICEWS05-15, the coarse time granularity
For Wikidata12k, the coarse time granularity
The final parameters selected:
coarse_grain | batch_size | label_smoothing | lr | dr | entity_dim | rel_dim | alpha | dropout1 | dropout2 | |
---|---|---|---|---|---|---|---|---|---|---|
ICEWS14 | month | 128 | 0.1 | 0.001 | 1 | 200 | 50 | 0.01 | 0.5 | 0.5 |
ICEWS05-15 | quarterly | 128 | 0.1 | 0.001 | 1 | 100 | 50 | 0.01 | 0.5 | 0.5 |
Wikidata12k | years5 | 16 | 0.1 | 0.001 | 1 | 30 | 20 | 0.1 | 0.5 | 0.5 |
Firstly, process the data using:
python process_data.py
Then obtain the test results using:
python main.py --dataset="icews14" --coarse_grain="month" --batch_size=128 --label_smoothing=0.1 --lr=0.001 --dr=1.0 --entity_dim=200 --rel_dim=50 --alpha=0.01 --dropout1=0.5 --dropout2=0.5
python main.py --dataset="icews05-15" --coarse_grain="quarterly" --batch_size=128 --label_smoothing=0.1 --lr=0.001 --dr=1.0 --entity_dim=100 --rel_dim=50 --alpha=0.1 --dropout1=0.5 --dropout2=0.5
python main.py --dataset="wikidata12k" --coarse_grain="years5" --batch_size=16 --label_smoothing=0.1 --lr=0.001 --dr=1.0 --entity_dim=30 --rel_dim=20 --alpha=0.1 --dropout1=0.5 --dropout2=0.5