Skip to content

Jinfa/TPComplEx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

TPComplEx

(Accepted by Expert Systems with Applications)

Installation

Create a conda environment with pytorch and scikit-learn :

conda create --name tkbc_env python=3.7
source activate tkbc_env
conda install --file requirements.txt -c pytorch

Then install the kbc package to this environment

python setup.py install

Datasets

To download the datasets, go to the ./tkbc/scripts folder and run:

chmod +x download_data.sh
./download_data.sh

GDELT dataset can be download here and rename the files without ".txt" suffix.

Once the datasets are downloaded, add them to the package data folder by running :

python tkbc/process_icews.py
python tkbc/process_yago.py
python tkbc/process_gdelt.py

This will create the files required to compute the filtered metrics.

Reproducing results

Run the following commands to reproduce the results

CUDA_VISIBLE_DEVICES=0 python tkbc/learner.py --dataset ICEWS14 --model TPComplEx --rank 1594 --emb_reg 1e-1 --time_reg 1e-4 

CUDA_VISIBLE_DEVICES=0 python tkbc/learner.py --dataset ICEWS05-15 --model TPComplEx --rank 886 --emb_reg 1e-2 --time_reg 1e-2  

CUDA_VISIBLE_DEVICES=0 python tkbc/learner.py --dataset yago15k --model TPComplEx --rank 1892 --no_time_emb --emb_reg 1e-1 --time_reg 1e-4

CUDA_VISIBLE_DEVICES=0 python tkbc/learner.py --dataset gdelt --model TPComplEx --rank 1256 --emb_reg 1e-5 --time_reg 1e-2 

Acknowledgement

We refer to the code of TComplEx. Thanks for their contributions.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published