Skip to content

JosephKKim/PoseAug_Human36M

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Do train the lifting network Simple with the Human3.6M dataset loaded by Moon.

Tree

Follow the instructions in link to make the 'Human3.6M' & 'MPII' folder and put it under the 'data' directory. (MPII for only one-stage method training)

$ PoseAug_Human36M
| -- .vscode
| -- assets
| -- checkpoint
| -- common
| -- data
    | -- Human3.6M
        | -- annotations
        | -- images
        | -- bbox_root
        | -- ...
    | -- MPII
        | -- annotations
        | -- images
| -- data_extra
| -- ...

Run training code

  • Only baseline network(Simple) training is available now.
  • Below instructions do the training of 2-stage methods.
# mlp - GT 2D keypoints
python3 run_baseline_custom.py --note GT --checkpoint ./checkpoint/pretrain_baseline  --keypoints gt

# mlp - 2D keypoints estimated by networks
# before train using the 2D keypoints from the 2D estimation network, do 'run_2d_save.py' first.
# the results will be stored in {args.checkpoint} / mlp / {args.keypoints} / {start_time}_{args.note} / 
python3 run_baseline_custom.py --note resnet_50 --checkpoint ./checkpoint/pretrain_baseline/ --keypoints resnet_50
python3 run_baseline_custom.py --note resnet_101 --checkpoint ./checkpoint/pretrain_baseline/ --keypoints resnet_101
python3 run_baseline_custom.py --note resnet_152 --checkpoint ./checkpoint/pretrain_baseline/ --keypoints resnet_152
python3 run_baseline_custom.py --note resnet --checkpoint ./checkpoint/pretrain_baseline/ --keypoints pelee
  • Below instruction does the training of 1-stage methods.
# thre result will be saved in {args.save_path_one_stage}/
python run_train_one_stage.py --batch_size 32 --save_path_one_stage {PATH/TO/SAVE/WEIGHT FILE}

Run evaluation code

# evaluate 2-stage methods
python run_evaluate_custom.py --keypoints gt --evaluate {PATH/TO/WEIGHT}
python run_evaluate_custom.py --keypoints pelee --evaluate {PATH/TO/WEIGHT}
python run_evaluate_custom.py --posenet_name mlp --keypoints resnet_50 --evaluate {PATH/TO/WEIGHT}
python run_evaluate_custom.py --posenet_name mlp --keypoints resnet_101 --evaluate {PATH/TO/WEIGHT}
python run_evaluate_custom.py --posenet_name mlp --keypoints resnet_152 --evaluate {PATH/TO/WEIGHT}
# evaluate the 2-stage method
python run_evaluate_one_stage.py --args.path_one_stage {PATH/TO/WEIGHT}

2D detection result save

Get the pre-trained weight from link for the resnet-based 2d pose estimation model and link for peleenet-based model.

# save the result of the Human3.6M training set using a 2D human pose estimation network
python run_2d_detection_save.py --batch_size 128 --keypoints resnet_50 --path_2d {PATH/TO/WEIGHT} --is_train true 
python run_2d_detection_save.py --batch_size 128 --keypoints resnet_101 --path_2d {PATH/TO/WEIGHT} --is_train true 
python run_2d_detection_save.py --batch_size 128 --keypoints resnet_152 --path_2d {PATH/TO/WEIGHT} --is_train true 
python run_2d_detection_save.py --batch_size 128 --keypoints pelee --path_2d {PATH/TO/WEIGHT} --is_train true 

# save the result of the Human3.6M test set
python run_2d_detection_save.py --batch_size 128 --keypoints resnet_50 --path_2d {PATH/TO/WEIGHT} --is_train false 
python run_2d_detection_save.py --batch_size 128 --keypoints resnet_101 --path_2d {PATH/TO/WEIGHT} --is_train false 
python run_2d_detection_save.py --batch_size 128 --keypoints resnet_152 --path_2d {PATH/TO/WEIGHT} --is_train false
python run_2d_detection_save.py --batch_size 128 --keypoints pelee --path_2d {PATH/TO/WEIGHT} --is_train false 

Saved 2D detection result test

# Visualize the keypoints detected by 2D estimator
# With GT keypoints -> save_test/{#}_GT.jpg
# With estimated keypoints -> save_test/{#}_pelee.jpg or save_test/{#}_resnet.jpg

python run_2d_save_test.pt --keypoints pelee
python run_2d_save_test.pt --keypoints resnet_50
python run_2d_save_test.pt --keypoints resnet_101
python run_2d_save_test.pt --keypoints resnet_152

Acknowledgements

This code uses (SemGCN, SimpleBL, ST-GCN and VPose3D) as backbone. The integrated contents are from PoseAug. Human 3.6M dataset is from Moon's github.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published