Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add unconjugated dot product dotu #27677

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions stdlib/LinearAlgebra/docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -299,6 +299,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f
Base.:*(::AbstractMatrix, ::AbstractMatrix)
Base.:\(::AbstractMatrix, ::AbstractVecOrMat)
LinearAlgebra.dot
LinearAlgebra.dotu
LinearAlgebra.cross
LinearAlgebra.factorize
LinearAlgebra.Diagonal
Expand Down
1 change: 1 addition & 0 deletions stdlib/LinearAlgebra/src/LinearAlgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -80,6 +80,7 @@ export
diagind,
diagm,
dot,
dotu,
eigen,
eigen!,
eigmax,
Expand Down
72 changes: 72 additions & 0 deletions stdlib/LinearAlgebra/src/generic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -729,6 +729,78 @@ function dot(x::AbstractVector, y::AbstractVector)
return s
end

"""
dotu(x, y)

For any iterable containers `x` and `y` (including arrays of any dimension) of numbers (or
any element type for which `*` is defined), compute the unconjugated dot product, i.e. the
sum of `x[i]*y[i]`, as if they were vectors.

# Examples
```jldoctest
julia> dotu(1:5, 2:6)
70

julia> v = [1, im]; dotu(v, v)
0 + 0im

julia> σ = [[0 1; 1 0], [0 -im; im 0], [1 0; 0 -1]]; n = [1, 2, 3]; dotu(σ, n)
2×2 Array{Complex{Int64},2}:
3+0im 1-2im
1+2im -3+0im

julia> dotu(σ[1:1], σ[1:1])
2×2 Array{Complex{Int64},2}:
1+0im 0+0im
0+0im 1+0im

julia> dotu(σ, σ)
2×2 Array{Complex{Int64},2}:
3+0im 0+0im
0+0im 3+0im
```
"""
function dotu(x, y) # arbitrary iterables
ix = iterate(x)
iy = iterate(y)
if ix == nothing
if iy != nothing
throw(DimensionMismatch("x and y are of different lengths!"))
end
return zero(eltype(x)) * zero(eltype(y))
end
if iy == nothing
throw(DimensionMismatch("x and y are of different lengths!"))
end
s = ix[1] * iy[1]
ix, iy = iterate(x, ix[2]), iterate(y, iy[2])
while ix != nothing && iy != nothing
s += ix[1] * iy[1]
ix, iy = iterate(x, ix[2]), iterate(y, iy[2])
end
if !(iy == nothing && ix == nothing)
throw(DimensionMismatch("x and y are of different lengths!"))
end
return s
end

dotu(x::Number, y::Number) = x * y

function dotu(x::AbstractArray, y::AbstractArray)
lx = _length(x)
if lx != _length(y)
throw(DimensionMismatch("first array has length $(lx) which does not match the length of the second, $(_length(y))."))
end
if lx == 0
return zero(eltype(x)) * zero(eltype(y))
end
s = zero(first(x) * first(y))
@inbounds for (Ix, Iy) in zip(eachindex(x), eachindex(y))
s += x[Ix] * y[Iy]
end
s
end


###########################################################################################

Expand Down
29 changes: 29 additions & 0 deletions stdlib/LinearAlgebra/src/matmul.jl
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,35 @@ function dot(x::Vector{T}, rx::Union{UnitRange{TI},AbstractRange{TI}}, y::Vector
GC.@preserve x y BLAS.dotc(length(rx), pointer(x)+(first(rx)-1)*sizeof(T), step(rx), pointer(y)+(first(ry)-1)*sizeof(T), step(ry))
end

dotu(x::Union{DenseArray{T},StridedVector{T}}, y::Union{DenseArray{T},StridedVector{T}}) where {T<:BlasReal} = BLAS.dot(x, y)
dotu(x::Union{DenseArray{T},StridedVector{T}}, y::Union{DenseArray{T},StridedVector{T}}) where {T<:BlasComplex} = BLAS.dotu(x, y)

function dotu(x::Vector{T}, rx::Union{UnitRange{TI},AbstractRange{TI}}, y::Vector{T}, ry::Union{UnitRange{TI},AbstractRange{TI}}) where {T<:BlasReal,TI<:Integer}
if length(rx) != length(ry)
throw(DimensionMismatch("length of rx, $(length(rx)), does not equal length of ry, $(length(ry))"))
end
if minimum(rx) < 1 || maximum(rx) > length(x)
throw(BoundsError(x, rx))
end
if minimum(ry) < 1 || maximum(ry) > length(y)
throw(BoundsError(y, ry))
end
GC.@preserve x y BLAS.dot(length(rx), pointer(x)+(first(rx)-1)*sizeof(T), step(rx), pointer(y)+(first(ry)-1)*sizeof(T), step(ry))
end

function dotu(x::Vector{T}, rx::Union{UnitRange{TI},AbstractRange{TI}}, y::Vector{T}, ry::Union{UnitRange{TI},AbstractRange{TI}}) where {T<:BlasComplex,TI<:Integer}
if length(rx) != length(ry)
throw(DimensionMismatch("length of rx, $(length(rx)), does not equal length of ry, $(length(ry))"))
end
if minimum(rx) < 1 || maximum(rx) > length(x)
throw(BoundsError(x, rx))
end
if minimum(ry) < 1 || maximum(ry) > length(y)
throw(BoundsError(y, ry))
end
GC.@preserve x y BLAS.dotu(length(rx), pointer(x)+(first(rx)-1)*sizeof(T), step(rx), pointer(y)+(first(ry)-1)*sizeof(T), step(ry))
end

function *(transx::Transpose{<:Any,<:StridedVector{T}}, y::StridedVector{T}) where {T<:BlasComplex}
x = transx.parent
return BLAS.dotu(x, y)
Expand Down
40 changes: 40 additions & 0 deletions stdlib/LinearAlgebra/test/matmul.jl
Original file line number Diff line number Diff line change
Expand Up @@ -251,6 +251,46 @@ dot_(x,y) = invoke(dot, Tuple{Any,Any}, x,y)
end
end

@testset "dotu" for elty in (Float32, Float64, ComplexF32, ComplexF64)
x = convert(Vector{elty},[1.0, 2.0, 3.0])
y = convert(Vector{elty},[3.5, 4.5, 5.5])
@test_throws DimensionMismatch dotu(x, 1:2, y, 1:3)
@test_throws BoundsError dotu(x, 1:4, y, 1:4)
@test_throws BoundsError dotu(x, 1:3, y, 2:4)
@test dotu(x, 1:2, y, 1:2) == convert(elty, 12.5)
@test transpose(x)*y == convert(elty, 29.0)
X = convert(Matrix{elty},[1.0 2.0; 3.0 4.0])
Y = convert(Matrix{elty},[1.5 2.5; 3.5 4.5])
@test dotu(X, Y) == convert(elty, 35.0)
Z = convert(Vector{Matrix{elty}},[reshape(1:4, 2, 2), fill(1, 2, 2)])
@test dotu(Z, Z) == convert(Matrix{elty},[9 17; 12 24])
@test dotu(one(elty), one(elty)) == one(elty) == dotu(ones(elty, 1), ones(elty, 1))
@test dotu(im*one(elty), one(elty)) == im*one(elty) == dotu(im*ones(elty, 1), ones(elty, 1))
@test dotu(one(elty), im*one(elty)) == im*one(elty) == dotu(ones(elty, 1), im*ones(elty, 1))
end
@test dotu(Any[1.0,2.0], Any[3.5,4.5]) === 12.5

dotu1(x,y) = invoke(dotu, Tuple{Any,Any}, x,y)
dotu2(x,y) = invoke(dotu, Tuple{AbstractArray,AbstractArray}, x,y)
@testset "generic dotu" begin
AA = [1+2im 3+4im; 5+6im 7+8im]
BB = [2+7im 4+1im; 3+8im 6+5im]
for A in (copy(AA), view(AA, 1:2, 1:2)), B in (copy(BB), view(BB, 1:2, 1:2))
@test dotu(A,B) == dotu(vec(A),vec(B)) == dotu1(A,B) == dotu2(A,B) == dotu(float.(A),float.(B)) == sum(A .* B)
@test dotu(Int[], Int[]) == 0 == dotu1(Int[], Int[]) == dotu2(Int[], Int[])
@test_throws MethodError dotu(Any[], Any[])
@test_throws MethodError dotu1(Any[], Any[])
@test_throws MethodError dotu2(Any[], Any[])
for n1 = 0:2, n2 = 0:2, d in (dotu, dotu1, dotu2)
if n1 != n2
@test_throws DimensionMismatch d(1:n1, 1:n2)
else
@test d(1:n1, 1:n2) ≈ norm(1:n1)^2
end
end
end
end

@testset "Issue 11978" begin
A = Matrix{Matrix{Float64}}(undef, 2, 2)
A[1,1] = Matrix(1.0I, 3, 3)
Expand Down
2 changes: 1 addition & 1 deletion stdlib/SparseArrays/src/SparseArrays.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ using Base.Sort: Forward
using LinearAlgebra

import Base: +, -, *, \, /, &, |, xor, ==
import LinearAlgebra: mul!, ldiv!, rdiv!, chol, adjoint!, diag, eigen, dot,
import LinearAlgebra: mul!, ldiv!, rdiv!, chol, adjoint!, diag, eigen, dot, dotu,
issymmetric, istril, istriu, lu, tr, transpose!, tril!, triu!,
cond, diagm, factorize, ishermitian, norm, opnorm, lmul!, rmul!, tril, triu

Expand Down
30 changes: 30 additions & 0 deletions stdlib/SparseArrays/src/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -234,6 +234,36 @@ function dot(A::SparseMatrixCSC{T1,S1},B::SparseMatrixCSC{T2,S2}) where {T1,T2,S
return r
end

function dotu(A::SparseMatrixCSC{T1,S1},B::SparseMatrixCSC{T2,S2}) where {T1,T2,S1,S2}
m, n = size(A)
size(B) == (m,n) || throw(DimensionMismatch("matrices must have the same dimensions"))
r = zero(T1) * zero(T2)
@inbounds for j = 1:n
ia = A.colptr[j]; ia_nxt = A.colptr[j+1]
ib = B.colptr[j]; ib_nxt = B.colptr[j+1]
if ia < ia_nxt && ib < ib_nxt
ra = A.rowval[ia]; rb = B.rowval[ib]
while true
if ra < rb
ia += oneunit(S1)
ia < ia_nxt || break
ra = A.rowval[ia]
elseif ra > rb
ib += oneunit(S2)
ib < ib_nxt || break
rb = B.rowval[ib]
else # ra == rb
r += A.nzval[ia] * B.nzval[ib]
ia += oneunit(S1); ib += oneunit(S2)
ia < ia_nxt && ib < ib_nxt || break
ra = A.rowval[ia]; rb = B.rowval[ib]
end
end
end
end
return r
end

## solvers
function fwdTriSolve!(A::SparseMatrixCSCUnion, B::AbstractVecOrMat)
# forward substitution for CSC matrices
Expand Down
2 changes: 2 additions & 0 deletions stdlib/SparseArrays/test/sparse.jl
Original file line number Diff line number Diff line change
Expand Up @@ -356,8 +356,10 @@ end
A = sprand(ComplexF64,10,15,0.4)
B = sprand(ComplexF64,10,15,0.5)
@test dot(A,B) ≈ dot(Matrix(A),Matrix(B))
@test dotu(A,B) ≈ dotu(Matrix(A),Matrix(B))
end
@test_throws DimensionMismatch dot(sprand(5,5,0.2),sprand(5,6,0.2))
@test_throws DimensionMismatch dotu(sprand(5,5,0.2),sprand(5,6,0.2))
end

sA = sprandn(3, 7, 0.5)
Expand Down
1 change: 1 addition & 0 deletions test/offsetarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -379,6 +379,7 @@ I = findall(!iszero, z)
@test norm(v) ≈ norm(parent(v))
@test norm(A) ≈ norm(parent(A))
@test dot(v, v) ≈ dot(v0, v0)
@test dotu(v, v) ≈ dotu(v0, v0)

# Prior to its removal from Base, cumsum_kbn was used here. To achieve the same level of
# accuracy in the tests, we need to use BigFloats with enlarged precision.
Expand Down