Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Streaming thread safety #581

Closed
wants to merge 23 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
82be9e4
Delete Dagger.cleanup()
JamesWrigley Apr 1, 2024
3e82247
Use procs() when initializing EAGER_CONTEXT
JamesWrigley Apr 9, 2024
6d24fd5
Add metadata to EagerThunk
jpsamaroo Dec 1, 2023
7d3712e
Sch: Allow occupancy key to be Any
jpsamaroo Dec 1, 2023
aaef343
Add a --verbose option to runtests.jl
jpsamaroo Nov 26, 2024
0763d99
task-tls: Refactor into DTaskTLS struct
jpsamaroo May 22, 2024
488ae7a
cancellation: Add cancel token support
jpsamaroo Sep 13, 2024
12e1bda
task-tls: Tweaks and fixes, task_id helper
jpsamaroo Sep 24, 2024
d1c467b
cancellation: Add graceful vs. forced
jpsamaroo Oct 3, 2024
ef2ea1e
cancellation: Wrap InterruptException in DTaskFailedException
jpsamaroo Oct 3, 2024
09fa4b7
Sch: Add unwrap_nested_exception for DTaskFailedException
jpsamaroo Sep 14, 2024
f593648
Add task_id for DTask
jpsamaroo Sep 24, 2024
711489b
dagdebug: Always yield to avoid heisenbugs
jpsamaroo Sep 24, 2024
0620a02
tests: Add offline mode
jpsamaroo Sep 24, 2024
4daf50e
dagdebug: Add JULIA_DAGGER_DEBUG config variable
jpsamaroo Oct 2, 2024
1d796a2
options: Add internal helper to strip all options
jpsamaroo Oct 3, 2024
73a24ad
tests: Test DTaskFailedException inner type
jpsamaroo Nov 21, 2024
8d04144
Sch: Skip not-yet-inited workers
jpsamaroo Nov 25, 2024
e772af0
Add streaming API
jpsamaroo Sep 12, 2023
ec44e08
Remove duplicate errormonitor()
JamesWrigley Nov 30, 2024
e43151f
Allow `nothing` to be thrown in dynamic_listener!()
JamesWrigley Dec 1, 2024
09bfd56
Unwrap nested exceptions in the streaming task input handlers
JamesWrigley Dec 1, 2024
96a0c46
Wait for input/output handlers to finish when closing a StreamStore
JamesWrigley Dec 1, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ makedocs(;
"Task Spawning" => "task-spawning.md",
"Data Management" => "data-management.md",
"Distributed Arrays" => "darray.md",
"Streaming Tasks" => "streaming.md",
"Scopes" => "scopes.md",
"Processors" => "processors.md",
"Task Queues" => "task-queues.md",
Expand Down
105 changes: 105 additions & 0 deletions docs/src/streaming.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# Streaming Tasks

Dagger tasks have a limited lifetime - they are created, execute, finish, and
are eventually destroyed when they're no longer needed. Thus, if one wants
to run the same kind of computations over and over, one might re-create a
similar set of tasks for each unit of data that needs processing.

This might be fine for computations which take a long time to run (thus
dwarfing the cost of task creation, which is quite small), or when working with
a limited set of data, but this approach is not great for doing lots of small
computations on a large (or endless) amount of data. For example, processing
image frames from a webcam, reacting to messages from a message bus, reading
samples from a software radio, etc. All of these tasks are better suited to a
"streaming" model of data processing, where data is simply piped into a
continuously-running task (or DAG of tasks) forever, or until the data runs
out.

Thankfully, if you have a problem which is best modeled as a streaming system
of tasks, Dagger has you covered! Building on its support for
[Task Queues](@ref), Dagger provides a means to convert an entire DAG of
tasks into a streaming DAG, where data flows into and out of each task
asynchronously, using the `spawn_streaming` function:

```julia
Dagger.spawn_streaming() do # enters a streaming region
vals = Dagger.@spawn rand()
print_vals = Dagger.@spawn println(vals)
end # exits the streaming region, and starts the DAG running
```

In the above example, `vals` is a Dagger task which has been transformed to run
in a streaming manner - instead of just calling `rand()` once and returning its
result, it will re-run `rand()` endlessly, continuously producing new random
values. In typical Dagger style, `print_vals` is a Dagger task which depends on
`vals`, but in streaming form - it will continuously `println` the random
values produced from `vals`. Both tasks will run forever, and will run
efficiently, only doing the work necessary to generate, transfer, and consume
values.

As the comments point out, `spawn_streaming` creates a streaming region, during
which `vals` and `print_vals` are created and configured. Both tasks are halted
until `spawn_streaming` returns, allowing large DAGs to be built all at once,
without any task losing a single value. If desired, streaming regions can be
connected, although some values might be lost while tasks are being connected:

```julia
vals = Dagger.spawn_streaming() do
Dagger.@spawn rand()
end

# Some values might be generated by `vals` but thrown away
# before `print_vals` is fully setup and connected to it

print_vals = Dagger.spawn_streaming() do
Dagger.@spawn println(vals)
end
```

More complicated streaming DAGs can be easily constructed, without doing
anything different. For example, we can generate multiple streams of random
numbers, write them all to their own files, and print the combined results:

```julia
Dagger.spawn_streaming() do
all_vals = [Dagger.spawn(rand) for i in 1:4]
all_vals_written = map(1:4) do i
Dagger.spawn(all_vals[i]) do val
open("results_$i.txt"; write=true, create=true, append=true) do io
println(io, repr(val))
end
return val
end
end
Dagger.spawn(all_vals_written...) do all_vals_written...
vals_sum = sum(all_vals_written)
println(vals_sum)
end
end
```

If you want to stop the streaming DAG and tear it all down, you can call
`Dagger.kill!(all_vals[1])` (or `Dagger.kill!(all_vals_written[2])`, etc., the
kill propagates throughout the DAG).

Alternatively, tasks can stop themselves from the inside with
`finish_streaming`, optionally returning a value that can be `fetch`'d. Let's
do this when our randomly-drawn number falls within some arbitrary range:

```julia
vals = Dagger.spawn_streaming() do
Dagger.spawn() do
x = rand()
if x < 0.001
# That's good enough, let's be done
return Dagger.finish_streaming("Finished!")
end
return x
end
end
fetch(vals)
```

In this example, the call to `fetch` will hang (while random numbers continue
to be drawn), until a drawn number is less than 0.001; at that point, `fetch`
will return with "Finished!", and the task `vals` will have terminated.
24 changes: 22 additions & 2 deletions src/Dagger.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ if !isdefined(Base, :ScopedValues)
else
import Base.ScopedValues: ScopedValue, with
end
import TaskLocalValues: TaskLocalValue

if !isdefined(Base, :get_extension)
import Requires: @require
Expand All @@ -46,16 +47,16 @@ include("processor.jl")
include("threadproc.jl")
include("context.jl")
include("utils/processors.jl")
include("dtask.jl")
include("cancellation.jl")
include("task-tls.jl")
include("scopes.jl")
include("utils/scopes.jl")
include("dtask.jl")
include("queue.jl")
include("thunk.jl")
include("submission.jl")
include("chunks.jl")
include("memory-spaces.jl")
include("cancellation.jl")

# Task scheduling
include("compute.jl")
Expand All @@ -67,6 +68,11 @@ include("sch/Sch.jl"); using .Sch
# Data dependency task queue
include("datadeps.jl")

# Streaming
include("stream.jl")
include("stream-buffers.jl")
include("stream-transfer.jl")

# Array computations
include("array/darray.jl")
include("array/alloc.jl")
Expand Down Expand Up @@ -145,6 +151,20 @@ function __init__()
ThreadProc(myid(), tid)
end
end

# Set up @dagdebug categories, if specified
try
if haskey(ENV, "JULIA_DAGGER_DEBUG")
empty!(DAGDEBUG_CATEGORIES)
for category in split(ENV["JULIA_DAGGER_DEBUG"], ",")
if category != ""
push!(DAGDEBUG_CATEGORIES, Symbol(category))
end
end
end
catch err
@warn "Error parsing JULIA_DAGGER_DEBUG" exception=err
end
end

end # module
2 changes: 0 additions & 2 deletions src/array/indexing.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
import TaskLocalValues: TaskLocalValue

### getindex

struct GetIndex{T,N} <: ArrayOp{T,N}
Expand Down
55 changes: 52 additions & 3 deletions src/cancellation.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,51 @@
# DTask-level cancellation

mutable struct CancelToken
@atomic cancelled::Bool
@atomic graceful::Bool
event::Base.Event
end
CancelToken() = CancelToken(false, false, Base.Event())
function cancel!(token::CancelToken; graceful::Bool=true)
if !graceful
@atomic token.graceful = false
end
@atomic token.cancelled = true
notify(token.event)
return
end
function is_cancelled(token::CancelToken; must_force::Bool=false)
if token.cancelled[]
if must_force && token.graceful[]
# If we're only responding to forced cancellation, ignore graceful cancellations
return false
end
return true
end
return false
end
Base.wait(token::CancelToken) = wait(token.event)
# TODO: Enable this for safety
#Serialization.serialize(io::AbstractSerializer, ::CancelToken) =
# throw(ConcurrencyViolationError("Cannot serialize a CancelToken"))

const DTASK_CANCEL_TOKEN = TaskLocalValue{Union{CancelToken,Nothing}}(()->nothing)

function clone_cancel_token_remote(orig_token::CancelToken, wid::Integer)
remote_token = remotecall_fetch(wid) do
return poolset(CancelToken())
end
errormonitor_tracked("remote cancel_token communicator", Threads.@spawn begin
wait(orig_token)
@dagdebug nothing :cancel "Cancelling remote token on worker $wid"
MemPool.access_ref(remote_token) do remote_token
cancel!(remote_token)
end
end)
end

# Global-level cancellation

"""
cancel!(task::DTask; force::Bool=false, halt_sch::Bool=false)

Expand Down Expand Up @@ -48,7 +96,7 @@ function _cancel!(state, tid, force, halt_sch)
for task in state.ready
tid !== nothing && task.id != tid && continue
@dagdebug tid :cancel "Cancelling ready task"
state.cache[task] = InterruptException()
state.cache[task] = DTaskFailedException(task, task, InterruptException())
state.errored[task] = true
Sch.set_failed!(state, task)
end
Expand All @@ -58,7 +106,7 @@ function _cancel!(state, tid, force, halt_sch)
for task in keys(state.waiting)
tid !== nothing && task.id != tid && continue
@dagdebug tid :cancel "Cancelling waiting task"
state.cache[task] = InterruptException()
state.cache[task] = DTaskFailedException(task, task, InterruptException())
state.errored[task] = true
Sch.set_failed!(state, task)
end
Expand All @@ -80,11 +128,11 @@ function _cancel!(state, tid, force, halt_sch)
Tf === typeof(Sch.eager_thunk) && continue
istaskdone(task) && continue
any_cancelled = true
@dagdebug tid :cancel "Cancelling running task ($Tf)"
if force
@dagdebug tid :cancel "Interrupting running task ($Tf)"
Threads.@spawn Base.throwto(task, InterruptException())
else
@dagdebug tid :cancel "Cancelling running task ($Tf)"
# Tell the processor to just drop this task
task_occupancy = task_spec[4]
time_util = task_spec[2]
Expand All @@ -93,6 +141,7 @@ function _cancel!(state, tid, force, halt_sch)
push!(istate.cancelled, tid)
to_proc = istate.proc
put!(istate.return_queue, (myid(), to_proc, tid, (InterruptException(), nothing)))
cancel!(istate.cancel_tokens[tid]; graceful=false)
end
end
end
Expand Down
6 changes: 0 additions & 6 deletions src/compute.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,12 +36,6 @@ end
Base.@deprecate gather(ctx, x) collect(ctx, x)
Base.@deprecate gather(x) collect(x)

cleanup() = cleanup(Context(global_context()))
function cleanup(ctx::Context)
Sch.cleanup(ctx)
nothing
end

function get_type(s::String)
local T
for t in split(s, ".")
Expand Down
14 changes: 13 additions & 1 deletion src/dtask.jl
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,16 @@ end
Options(;options...) = Options((;options...))
Options(options...) = Options((;options...))

"""
DTaskMetadata

Represents some useful metadata pertaining to a `DTask`:
- `return_type::Type` - The inferred return type of the task
"""
mutable struct DTaskMetadata
return_type::Type
end

"""
DTask

Expand All @@ -50,9 +60,11 @@ more details.
mutable struct DTask
uid::UInt
future::ThunkFuture
metadata::DTaskMetadata
finalizer_ref::DRef
thunk_ref::DRef
DTask(uid, future, finalizer_ref) = new(uid, future, finalizer_ref)

DTask(uid, future, metadata, finalizer_ref) = new(uid, future, metadata, finalizer_ref)
end

const EagerThunk = DTask
Expand Down
6 changes: 6 additions & 0 deletions src/options.jl
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,12 @@ function with_options(f, options::NamedTuple)
end
with_options(f; options...) = with_options(f, NamedTuple(options))

function _without_options(f)
with(options_context => NamedTuple()) do
f()
end
end

"""
get_options(key::Symbol, default) -> Any
get_options(key::Symbol) -> Any
Expand Down
Loading