This repository has been archived by the owner on Jun 29, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Pietro Vertechi
authored
Nov 13, 2018
1 parent
4761a68
commit bc4cbbc
Showing
10 changed files
with
327 additions
and
156 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
*.jl.cov | ||
*.jl.*.cov | ||
*.jl.mem | ||
*play.jl |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -6,3 +6,5 @@ Reexport | |
StatsBase | ||
Observables | ||
Distributions | ||
Tables | ||
IndexedTables |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,23 +1,11 @@ | ||
convert_arguments(P::Type{<: AbstractPlot}, d::KernelDensity.UnivariateKDE) = | ||
convert_arguments(P, d.x, d.density) | ||
|
||
convert_arguments(P::Type{<: AbstractPlot}, d::KernelDensity.BivariateKDE) = | ||
convert_arguments(P, d.x, d.y, d.density) | ||
|
||
plottype(::UnivariateKDE) = Lines | ||
plottype(::BivariateKDE) = Heatmap | ||
|
||
@recipe(Density) do scene | ||
Theme(; | ||
default_theme(scene)..., | ||
boundary = nothing, | ||
npoints = nothing, | ||
kernel = nothing, | ||
bandwidth = nothing | ||
) | ||
function convert_arguments(P::PlotFunc, d::KernelDensity.UnivariateKDE) | ||
ptype = plottype(P, Lines) # choose the more concrete one | ||
ptype => convert_arguments(ptype, d.x, d.density) | ||
end | ||
|
||
function plot!(plot::Density{<:NTuple{N}}) where N | ||
pdf = lift_plot(kde, plot; n = N, syms = [:boundary, :npoints, :kernel, :bandwidth]) | ||
plot!(plot, Theme(plot), pdf) | ||
function convert_arguments(P::PlotFunc, d::KernelDensity.BivariateKDE) | ||
ptype = plottype(P, Heatmap) | ||
ptype => convert_arguments(ptype, d.x, d.y, d.density) | ||
end | ||
|
||
used_attributes(::PlotFunc, ::typeof(kde), args...) = (:bandwidth, :kernel, :npoints, :boundary, :weights) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
struct UniqueValues{S, T1<:AbstractArray{S}, T2<:AbstractArray{S}} | ||
values::T1 | ||
unique::T2 | ||
value2index::Dict{S, Int} | ||
end | ||
|
||
function UniqueValues(col, s = unique(sort(col))) | ||
value2index = Dict(zip(s, 1:length(s))) | ||
UniqueValues(col, s, value2index) | ||
end | ||
|
||
(cs::UniqueValues)(scale::Function, el) = scale(el) | ||
|
||
function (cs::UniqueValues)(scale::AbstractArray, el) | ||
scale[(cs.value2index[el] - 1) % length(scale) + 1] | ||
end | ||
|
||
struct PlottableTable{P} | ||
table::AbstractIndexedTable | ||
attr::Dict{Symbol, Any} | ||
end | ||
|
||
PlottableTable{P}(t) where {P} = PlottableTable{P}(t, Dict{Symbol, Any}()) | ||
|
||
struct Group | ||
columns::NamedTuple | ||
f::Function | ||
end | ||
|
||
Group(c::NamedTuple) = Group(c, tuple) | ||
|
||
Group(v, f::Function = tuple) = Group((color = v,), f) | ||
Group(f::Function = tuple; kwargs...) = Group(values(kwargs), f) | ||
|
||
IndexedTables.columns(grp::Group) = grp.columns | ||
IndexedTables.colnames(grp::Group) = propertynames(columns(grp)) | ||
|
||
combine(f1, f2) = (args...) -> f1(to_tuple(f2(args...))...) | ||
combine(f1, f2::typeof(tuple)) = f1 | ||
combine(f1::typeof(tuple), f2) = f2 | ||
combine(f1::typeof(tuple), f2::typeof(tuple)) = tuple | ||
|
||
Base.merge(g1::Group, g2::Group) = Group(merge(g1.columns, g2.columns), combine(g1.f, g2.f)) | ||
Base.merge(f::Function, g::Group) = merge(Group(f), g) | ||
Base.merge(g::Group, f::Function) = merge(f, g) | ||
|
||
Base.:*(g1::Group, g2::Group) = merge(g1, g2) | ||
|
||
function Base.length(grp::Group) | ||
cols = grp.columns | ||
isempty(cols) ? 0 : length(cols[1]) | ||
end | ||
|
||
_split(v, len, idxs) = v | ||
_split(v::AbstractVector, len, idxs) = length(v) == len ? view(v, idxs) : v | ||
_typ(::AbstractVector) = AbstractVector | ||
_typ(::T) where {T} = T | ||
|
||
function default_theme(scene, ::Type{<:Combined{T, <: Tuple{PlottableTable{P}}}}) where {T, P} | ||
default_theme(scene, P) | ||
end | ||
|
||
AbstractPlotting.calculated_attributes!(p::Combined{T, <: Tuple{PlottableTable}}) where {T} = p | ||
|
||
function plot!(p::Combined{T, <: Tuple{PlottableTable{PT}}}) where {T, PT} | ||
pt = (p[1] |> to_value) | ||
t = pt.table | ||
cols = columns(t, Keys()) | ||
names = keys(cols) | ||
funcs = map(UniqueValues, cols) | ||
scales = map(key -> getscale(p, key), names) | ||
len = sum(length, column(t, :rows)) | ||
for row in rows(t) | ||
attr = copy(Theme(p)) | ||
for (i, key) in enumerate(names) | ||
val = getproperty(row, key) | ||
attr[key] = lift(funcs[i], scales[i], to_node(val)) | ||
end | ||
for (key, val) in Iterators.flatten([attr, pt.attr]) | ||
if !(key in names) | ||
attr[key] = lift(t -> _split(t, len, row.rows), val, typ = _typ(val[])) | ||
end | ||
end | ||
plot!(p, PT, attr, row.output...) | ||
end | ||
end | ||
|
||
convert_arguments(P::PlotFunc, g1::Group, g2::Group, args...; kwargs...) = | ||
convert_arguments(P, merge(g1, g2), args...; kwargs...) | ||
|
||
convert_arguments(P::PlotFunc, f::Function, g1::Group, g2::Group, args...; kwargs...) = | ||
convert_arguments(P, f, merge(g1, g2), args...; kwargs...) | ||
|
||
convert_arguments(P::PlotFunc, f::Function, g::Group, args...; kwargs...) = | ||
convert_arguments(P, merge(f, g), args...; kwargs...) | ||
|
||
to_pair(P, t) = P => t | ||
to_pair(P, p::Pair) = to_pair(plottype(P, first(p)), last(p)) | ||
function convert_arguments(P::PlotFunc, g::Group, args...; kwargs...) | ||
N = length(args) | ||
f = g.f | ||
names = colnames(g) | ||
cols = columns(g) | ||
len = length(g) | ||
vec_args = map(object2vec, args) | ||
len == 0 && (len = length(vec_args[1])) | ||
funcs = map(UniqueValues, cols) | ||
coltable = table(1:len, cols..., vec_args...; | ||
names = [:row, names..., (Symbol("x$i") for i in 1:N)...], copy = false) | ||
|
||
PT = Ref{Any}(nothing) | ||
t = groupby(coltable, names, usekey = true) do key, dd | ||
idxs = column(dd, :row) | ||
out = to_tuple(f(map(vec2object, columns(dd, Not(:row)))...; kwargs...)) | ||
pt, conv_args = to_pair(P, convert_arguments(P, out...)) | ||
PT[] = pt | ||
tup = (rows = idxs, output = conv_args) | ||
end | ||
(t isa NamedTuple) && (t = table((rows = [t.rows], output = [t.output]))) | ||
PT[] => (PlottableTable{PT[]}(t),) | ||
end | ||
|
||
struct ViewVector{T, A <: AbstractArray{T}} <: AbstractVector{T} | ||
w::A | ||
ViewVector(w::AbstractArray{T, M}) where {T, M} = new{T, typeof(w)}(w) | ||
end | ||
|
||
Base.size(v::ViewVector) = size(v.w)[1:1] | ||
Base.getindex(v::ViewVector, i) = Base.getindex(v.w, i, axes(v.w)[2:end]...) | ||
|
||
Base.view(v::ViewVector, i) = ViewVector(Base.view(v.w, i, axes(v.w)[2:end]...)) | ||
|
||
|
||
vec2object(x::Columns) = Tuple(columns(x)) | ||
vec2object(x) = x | ||
vec2object(v::ViewVector) = v.w | ||
|
||
object2vec(v::Union{Tuple, NamedTuple}) = Columns(v) | ||
object2vec(v::AbstractVector) = v | ||
object2vec(v::AbstractArray) = ViewVector(v) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
const default_scales = Dict( | ||
:color => AbstractPlotting.to_colormap(:Dark2), | ||
:marker => collect(keys(AbstractPlotting._marker_map)), | ||
:linestyle => [nothing, :dash, :dot, :dashdot, :dashdotdot], | ||
) | ||
|
||
isscale(::Function) = true | ||
isscale(::AbstractArray) = true | ||
isscale(::Any) = false | ||
isscale(::Nothing) = false | ||
|
||
function getscale(p::Combined, key) | ||
a = get(p, key, Node(nothing)) | ||
isscale(a[]) ? a : to_node(default_scales[key]) | ||
end |
Oops, something went wrong.