Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make SparseArrays a weak dependency #134

Merged
merged 1 commit into from
Sep 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,16 @@ version = "1.9.0"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[weakdeps]
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[extensions]
SparseArraysExt = ["SparseArrays"]

[extras]
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Random", "Test"]
test = ["Random", "SparseArrays", "Test"]
101 changes: 101 additions & 0 deletions ext/SparseArraysExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
module SparseArraysExt

##### SparseArrays optimizations #####

using Base: require_one_based_indexing
using LinearAlgebra
using SparseArrays
using Statistics
using Statistics: centralize_sumabs2, unscaled_covzm

# extended functions
import Statistics: cov, centralize_sumabs2!

function cov(X::SparseMatrixCSC; dims::Int=1, corrected::Bool=true)
vardim = dims
a, b = size(X)
n, p = vardim == 1 ? (a, b) : (b, a)

# The covariance can be decomposed into two terms
# 1/(n - 1) ∑ (x_i - x̄)*(x_i - x̄)' = 1/(n - 1) (∑ x_i*x_i' - n*x̄*x̄')
# which can be evaluated via a sparse matrix-matrix product

# Compute ∑ x_i*x_i' = X'X using sparse matrix-matrix product
out = Matrix(unscaled_covzm(X, vardim))

# Compute x̄
x̄ᵀ = mean(X, dims=vardim)

# Subtract n*x̄*x̄' from X'X
@inbounds for j in 1:p, i in 1:p
out[i,j] -= x̄ᵀ[i] * x̄ᵀ[j]' * n
end

# scale with the sample size n or the corrected sample size n - 1
return rmul!(out, inv(n - corrected))
end

# This is the function that does the reduction underlying var/std
function centralize_sumabs2!(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray) where {S,Tv,Ti}
require_one_based_indexing(R, A, means)
lsiz = Base.check_reducedims(R,A)
for i in 1:max(ndims(R), ndims(means))
if axes(means, i) != axes(R, i)
throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))"))
end
end
isempty(R) || fill!(R, zero(S))
isempty(A) && return R

rowval = rowvals(A)
nzval = nonzeros(A)
m = size(A, 1)
n = size(A, 2)

if size(R, 1) == size(R, 2) == 1
# Reduction along both columns and rows
R[1, 1] = centralize_sumabs2(A, means[1])
elseif size(R, 1) == 1
# Reduction along rows
@inbounds for col = 1:n
mu = means[col]
r = convert(S, (m - length(nzrange(A, col)))*abs2(mu))
@simd for j = nzrange(A, col)
r += abs2(nzval[j] - mu)
end
R[1, col] = r
end
elseif size(R, 2) == 1
# Reduction along columns
rownz = fill(convert(Ti, n), m)
@inbounds for col = 1:n
@simd for j = nzrange(A, col)
row = rowval[j]
R[row, 1] += abs2(nzval[j] - means[row])
rownz[row] -= 1
end
end
for i = 1:m
R[i, 1] += rownz[i]*abs2(means[i])
end
else
# Reduction along a dimension > 2
@inbounds for col = 1:n
lastrow = 0
@simd for j = nzrange(A, col)
row = rowval[j]
for i = lastrow+1:row-1
R[i, col] = abs2(means[i, col])
end
R[row, col] = abs2(nzval[j] - means[row, col])
lastrow = row
end
for i = lastrow+1:m
R[i, col] = abs2(means[i, col])
end
end
end
return R
end

end # module
93 changes: 4 additions & 89 deletions src/Statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ Standard library module for basic statistics functionality.
"""
module Statistics

using LinearAlgebra, SparseArrays
using LinearAlgebra

using Base: has_offset_axes, require_one_based_indexing

Expand Down Expand Up @@ -1073,94 +1073,9 @@ quantile(itr, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
quantile(v::AbstractVector, p; sorted::Bool=false, alpha::Real=1.0, beta::Real=alpha) =
quantile!(sorted ? v : Base.copymutable(v), p; sorted=sorted, alpha=alpha, beta=beta)


##### SparseArrays optimizations #####

function cov(X::SparseMatrixCSC; dims::Int=1, corrected::Bool=true)
vardim = dims
a, b = size(X)
n, p = vardim == 1 ? (a, b) : (b, a)

# The covariance can be decomposed into two terms
# 1/(n - 1) ∑ (x_i - x̄)*(x_i - x̄)' = 1/(n - 1) (∑ x_i*x_i' - n*x̄*x̄')
# which can be evaluated via a sparse matrix-matrix product

# Compute ∑ x_i*x_i' = X'X using sparse matrix-matrix product
out = Matrix(unscaled_covzm(X, vardim))

# Compute x̄
x̄ᵀ = mean(X, dims=vardim)

# Subtract n*x̄*x̄' from X'X
@inbounds for j in 1:p, i in 1:p
out[i,j] -= x̄ᵀ[i] * x̄ᵀ[j]' * n
end

# scale with the sample size n or the corrected sample size n - 1
return rmul!(out, inv(n - corrected))
end

# This is the function that does the reduction underlying var/std
function centralize_sumabs2!(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray) where {S,Tv,Ti}
require_one_based_indexing(R, A, means)
lsiz = Base.check_reducedims(R,A)
for i in 1:max(ndims(R), ndims(means))
if axes(means, i) != axes(R, i)
throw(DimensionMismatch("dimension $i of `mean` should have indices $(axes(R, i)), but got $(axes(means, i))"))
end
end
isempty(R) || fill!(R, zero(S))
isempty(A) && return R

rowval = rowvals(A)
nzval = nonzeros(A)
m = size(A, 1)
n = size(A, 2)

if size(R, 1) == size(R, 2) == 1
# Reduction along both columns and rows
R[1, 1] = centralize_sumabs2(A, means[1])
elseif size(R, 1) == 1
# Reduction along rows
@inbounds for col = 1:n
mu = means[col]
r = convert(S, (m - length(nzrange(A, col)))*abs2(mu))
@simd for j = nzrange(A, col)
r += abs2(nzval[j] - mu)
end
R[1, col] = r
end
elseif size(R, 2) == 1
# Reduction along columns
rownz = fill(convert(Ti, n), m)
@inbounds for col = 1:n
@simd for j = nzrange(A, col)
row = rowval[j]
R[row, 1] += abs2(nzval[j] - means[row])
rownz[row] -= 1
end
end
for i = 1:m
R[i, 1] += rownz[i]*abs2(means[i])
end
else
# Reduction along a dimension > 2
@inbounds for col = 1:n
lastrow = 0
@simd for j = nzrange(A, col)
row = rowval[j]
for i = lastrow+1:row-1
R[i, col] = abs2(means[i, col])
end
R[row, col] = abs2(nzval[j] - means[row, col])
lastrow = row
end
for i = lastrow+1:m
R[i, col] = abs2(means[i, col])
end
end
end
return R
# If package extensions are not supported in this Julia version
if !isdefined(Base, :get_extension)
include("../ext/SparseArraysExt.jl")
end

end # module