Skip to content

This repository features Python implementations of a wide range of machine learning models that I explored during the Machine Learning A-Z course. The models cover Regression, Classification, Clustering, Reinforcement Learning, Association Rule Learning, Natural Language Processing (NLP), as well as Artificial Neural Networks (ANN) and Convolutiona

License

Notifications You must be signed in to change notification settings

JunaidSalim/ML_Practice

Repository files navigation

ML_Practice

This repository contains implementations of various machine learning models applied to different real-world datasets. I created this repository for practice, which helped me hone my machine learning skills.

Repository Structure

ML_Practice/
├── 1.Data Preprocessing/
│   ├── 1.Importing Datasets
│   ├── 2.Dealing with null values
│   ├── 3.Data Formatting & Data Binning
│   └── 4.Dealing With Categorical Values
├── 2.Regression/
│   ├── 1.Simple Linear Regression
│   ├── 2.Multiple Linear Regression
│   ├── 3.Polynomial Regression
│   ├── 4.Support Vector Regression (SVR)
│   ├── 5.Decision Tree Regression
│   └── 6.Random Forest Regression  
├── 3.Classification/
│   ├── 1.Logistic Regression
│   ├── 2.K-Nearest Neighbors (K-NN)
│   ├── 3.Support Vector Machine (SVM)
│   ├── 4.Kernel SVM
│   ├── 5.Naive Byes
│   ├── 6.Decision Tree Classification
│   └── 7.Random Forest Classification
├── 4.Clustering/
│   ├── 1.K-Means Clustering
│   └── 2.Heirarchical Clustering
├── 5.Association Rule Learning/
│   ├── 1.Apriori
│   └── 2.Eclat
├── 6.Reinforcement Learning/
│   ├── 1.Upper Confidence Bound (UCB)
│   └── 2.Thompson Sampling
├── 7.Natural Language Processing  
├── 8.Deep Learning/
│   ├── 1.Artificial Neural Network (ANN)
│   └── 2.Convolutional Neural Network (CNN) 
├── 9.Dimensionality Reduction/
│   ├── 1.Principal Component Analysis (PCA)
│   ├── 2.Linear Discriminant Analysis (LDA)
│   └── 3.Kernel PCA
├── 10.Model Selection and Boosting/
│   ├── 1.Model Selection
│   ├── 2.XGBoost
│   └── 3.CatBoost
└── Model Selection/
    ├── Classification
    └── Regression

About

This repository features Python implementations of a wide range of machine learning models that I explored during the Machine Learning A-Z course. The models cover Regression, Classification, Clustering, Reinforcement Learning, Association Rule Learning, Natural Language Processing (NLP), as well as Artificial Neural Networks (ANN) and Convolutiona

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published