Skip to content

Commit

Permalink
DOC: Update is_sparse docstring (pandas-dev#19983)
Browse files Browse the repository at this point in the history
* BUG: Identify SparseDataFrame as sparse

The is_sparse function checks to see if
an array-like is spare by checking to see
if it is an instance of ABCSparseArray or
ABCSparseSeries. This commit adds
ABCSparseDataFrame to that list -- so it
can detect that a DataFrame (which is an
array-like object) is sparse.

Added a test for this.

* Revert "BUG: Identify SparseDataFrame as sparse"

This reverts commit 10dffd1.

The previous commit's change was not necessary.
Will add a docstring to clarify the behaviour of the method.

* DOC: Revise is_sparce docstring

Clean up the docstring for is_sparse so it confirms to the
documentation style guide.

Add additional examples and clarify that is_sparse
expect a 1-dimensional array-like.

* DOC: Adjust is_sparse docstring.

Responding to pull request comments.
  • Loading branch information
sechilds authored and JustinZhengBC committed Nov 14, 2018
1 parent 8e4bf4c commit b3a3ac7
Showing 1 changed file with 37 additions and 10 deletions.
47 changes: 37 additions & 10 deletions pandas/core/dtypes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,32 +150,59 @@ def is_object_dtype(arr_or_dtype):

def is_sparse(arr):
"""
Check whether an array-like is a pandas sparse array.
Check whether an array-like is a 1-D pandas sparse array.
Check that the one-dimensional array-like is a pandas sparse array.
Returns True if it is a pandas sparse array, not another type of
sparse array.
Parameters
----------
arr : array-like
The array-like to check.
Array-like to check.
Returns
-------
boolean : Whether or not the array-like is a pandas sparse array.
bool
Whether or not the array-like is a pandas sparse array.
See Also
--------
DataFrame.to_sparse : Convert DataFrame to a SparseDataFrame.
Series.to_sparse : Convert Series to SparseSeries.
Series.to_dense : Return dense representation of a Series.
Examples
--------
>>> is_sparse(np.array([1, 2, 3]))
False
>>> is_sparse(pd.SparseArray([1, 2, 3]))
Returns `True` if the parameter is a 1-D pandas sparse array.
>>> is_sparse(pd.SparseArray([0, 0, 1, 0]))
True
>>> is_sparse(pd.SparseSeries([1, 2, 3]))
>>> is_sparse(pd.SparseSeries([0, 0, 1, 0]))
True
This function checks only for pandas sparse array instances, so
sparse arrays from other libraries will return False.
Returns `False` if the parameter is not sparse.
>>> is_sparse(np.array([0, 0, 1, 0]))
False
>>> is_sparse(pd.Series([0, 1, 0, 0]))
False
Returns `False` if the parameter is not a pandas sparse array.
>>> from scipy.sparse import bsr_matrix
>>> is_sparse(bsr_matrix([1, 2, 3]))
>>> is_sparse(bsr_matrix([0, 1, 0, 0]))
False
Returns `False` if the parameter has more than one dimension.
>>> df = pd.SparseDataFrame([389., 24., 80.5, np.nan],
columns=['max_speed'],
index=['falcon', 'parrot', 'lion', 'monkey'])
>>> is_sparse(df)
False
>>> is_sparse(df.max_speed)
True
"""
from pandas.core.arrays.sparse import SparseDtype

Expand Down

0 comments on commit b3a3ac7

Please sign in to comment.