Skip to content

JyotsnaT/Machine-Learning-fundamentals

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning A to Z

Calculus

  1. Functions - Logarithms, tanh, sigmoidal
  2. Derivatives - Gradient, hessian

Statistical Data Analysis

  1. Data Preprocessing
  2. PCA : Principal Component Analysis
  3. LDA : Latent Dirchlet Analysis
  4. t-SNE : T-distributed stochastic neighbor embedding

Supervised Learning

  • Classification algorithms
    • Logistic Regression
    • KNN
    • Naive Bayes classifier
    • Decision Trees
    • Support Vector Machines
    • Adaboost
    • Neural Networks
  • Regression Analysis
    • Linear Regression
  • Recommender Systems
  • Evaluation
    • Loss Functions
      • Shannon Information, Entropy, KL Divergence
      • MSE
    • Metrics NDCG

Unsupervised Learning

Algorithms

  • K-means clustering
  • Mixture Models

Reinforcement learning

Computer Vision

  • Bayes filters and Kalman filters

ML system design

Refernce Links

Deep Learning

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages