Models: Our models can be loaded from bart-base-emojilm, bart-large-emojilm, t5-base-emojilm, flan-t5-xl-emojilm.
Dataset: Our dataset is accessible at Text2Emoji.
Official Implementation for "EmojiLM: Modeling the New Emoji Language"
This is a repo for models pre-trained on the Text2Emoji dataset to translate setences into series of emojis.
For instance, "I love pizza" will be translated into "🍕😍".
An example implementation for translation:
from transformers import BartTokenizer, BartForConditionalGeneration
def translate(sentence, **argv):
inputs = tokenizer(sentence, return_tensors="pt")
generated_ids = generator.generate(inputs["input_ids"], **argv)
decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True).replace(" ", "")
return decoded
path = "KomeijiForce/bart-large-emojilm"
tokenizer = BartTokenizer.from_pretrained(path)
generator = BartForConditionalGeneration.from_pretrained(path)
sentence = "I love the weather in Alaska!"
decoded = translate(sentence, num_beams=4, do_sample=True, max_length=100)
print(decoded)
You will probably get some output like "❄️🏔️😍".
If you find this model & dataset resource useful, please consider cite our paper:
@article{DBLP:journals/corr/abs-2311-01751,
author = {Letian Peng and
Zilong Wang and
Hang Liu and
Zihan Wang and
Jingbo Shang},
title = {EmojiLM: Modeling the New Emoji Language},
journal = {CoRR},
volume = {abs/2311.01751},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2311.01751},
doi = {10.48550/ARXIV.2311.01751},
eprinttype = {arXiv},
eprint = {2311.01751},
timestamp = {Tue, 07 Nov 2023 18:17:14 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2311-01751.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}