训练测试代码主入口:
main_basic.py
: basic model
main_conditional.py
: 使用一个condition的model
main_multi_conditional.py
: 使用多个condition的model
所有代码运行所需参数已经在config
文件中设置好
运行命令只需指定配置文件和所需使用的gpu id
示例:
python main<model>.py --cfg config/iu_con_1.yml --gpu 0
Python >= 3.6
Pytorch >= 1.7
torchvison
- Microsoft COCO Caption Evaluation Tools
- CheXpert
Download IU and MIMIC-CXR datasets, and place them in data
folder.
- config : setup training arguments and data path
- data : store IU and MIMIC dataset
- Models: basic model and all our models
- the layer define of our model
- loss function
- metrics
- some utils
- data_loader.py: dataloader
- build_vocab.py: tokenizer
- preprocessing: data preprocess
- pycocoevalcap: Microsoft COCO Caption Evaluation Tools
-
data
- Download and unzip IU dataset to here
-
preprocess_data.py
- Create dataset split for IU dataset.
- Preprocess report for normalizion, such as lower-case, replacing nonsense tokens(e.g., 'xxxx-a-xxxx').
- Build vocabulary file.
-
extract_feature.py
- Extract visual feature for retrieve conditional image.
-
retieve_conditional_pair.py
- Retrieve conditional image using cosine similarity.
- dataset: iu / mimic
-
main_<model>.py
- The model will be trained using command
python main_<model>.py --cfg config/<dataset_N> --expe_name <experiment name> --gpu <GPU_ID>
- More options can be found in
config/opts.py
file.
- The model will be trained using command
-
Models
Basic.py
: Basic ModelConditional.py
: DeltaNet condition generation modelMultiConditional.py
: DeltaNet multiple conditional generation modelGenerator.py
andBeam.py
: Generate report using beam searchModules.py
: Implement of scaled dot-product attentionSubLayers.py
: Implement of multi-head attentionmisc.py
andutils.py
: Utils function
test.py
: Generate report from trained model using command python test.py --pretrained <path to the checkpoint file>
-
metrics.py
- Evaluate the generated report.
-
pycocoevalcap
- Microsoft COCO Caption Evaluation Tools
- Need clone from GitHub and modified the code to work with Python 3
Xian Wu, Shuxin Yang, Zhaopeng Qiu, Shen Ge, Yangtian Yan, Xingwang Wu, S.Kevin Zhou, Li Xiao. DeltaNet: Conditional Medical Report Generation for COVID-19 Diagnosis. Coling, 2022
If you have any problem with the code, please contact Xian Wu(kevinxwu@tencent.com), Shuxin Yang(aspenstarss@gmail.com) or Li Xiao(andrew.lxiao@gmail.com).
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand. TorchXRayVision: A library of chest X-ray datasets and models. Medical Imaging with Deep Learning. https://github.com/mlmed/torchxrayvision, 2020