This is the repository for the paper entitled "Time2State: An Unsupervised Framework for Inferring the Latent State in Time Series Data".
Running Time2State requires the installation of other packages.
# Install TSpy
git clone git@github.com:Lab-ANT/TSpy
cd TSpy
pip install -r requirements.txt
python setup.py install
cd ..
# Clone Time2State
git clone git@github.com:Lab-ANT/Time2State
cd Time2State
pip install -r requirements.txt
Download PAMAP2 and USC-HAD and put them in the following position.
.
├── data
│ ├── ActRecTut
│ ├── synthetic_data_for_segmentation
│ ├── MoCap
│ ├── PAMAP2
│ │ ├── Protocol
│ │ │ ├── subject101.dat
│ │ │ ├── ...
│ ├── USC-HAD
│ │ ├── Subject1
│ │ ├── Subject2
│ │ ├── ...
Once the data is placed correctly, run the following script.
python ./scripts/prepare_data.py
run the *.py files in ./experiments directly
We have newly added a comparison between FLOSS and Time2State, the implementation code and corresponding technique report are saved in the supplements/ folder of this project. For more details, please see the README file in supplements/Compare_With_FOSS/