The official repository for MoT. Check out our paper for more information.
Python>=3.8
pip install torch==1.8.2+cu111 torchtext==0.9.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip install -r requirements.txt
Download the datasets from Google Drive.
First, fill your account in to a text file, as follows:
[Email_1]----[Password_1]----[Openai_API_Key_1]
[Email_2]----[Password_2]----[Openai_API_Key_2]
...
Our code supports using multiple openai accounts simultaneously and call openai api in parallel.
If you want to run the entire method:
# dataset:[aqua, drop, anli_a1, anli_a2, anli_a3, obqa, com_v, boolq, fact_checker, qa_wikidata]
dataset=[dataset] bash commands/run_mot_full.sh
Or you can directly download the memory of thoughts in pre-thinking, from Google Drive, and run the subsequent memory filtering and recalling:
# dataset:[aqua, drop, anli_a1, anli_a2, anli_a3, obqa, com_v, boolq, fact_checker, qa_wikidata]
dataset=[dataset] bash commands/run_mot_with_existing_memory.sh
@article{memory_of_thought,
author = {Xiaonan Li and
Xipeng Qiu},
title = {MoT: Memory-of-Thought Enables ChatGPT to Self-Improve},
journal = {CoRR},
volume = {abs/2305.05181},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2305.05181},
doi = {10.48550/ARXIV.2305.05181},
eprinttype = {arXiv},
eprint = {2305.05181},
timestamp = {Fri, 12 May 2023 16:06:58 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2305-05181.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}