Skip to content

Commit

Permalink
New metric: Calinski Harabasz Score (#2036)
Browse files Browse the repository at this point in the history
* docs

* functional

* module

* tests

* changelog

* try another link

* mypy

* remove broken link

* change image

* use new inputs

* fix

* fix flaky tests

---------

Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Sep 4, 2023
1 parent c139a96 commit b10cc2f
Show file tree
Hide file tree
Showing 13 changed files with 295 additions and 8 deletions.
10 changes: 7 additions & 3 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,13 +11,17 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Added

- Added `MutualInformationScore` metric to cluster package ([#2008](https://github.com/Lightning-AI/torchmetrics/pull/2008)
- Added `MutualInformationScore` metric to cluster package ([#2008](https://github.com/Lightning-AI/torchmetrics/pull/2008))


- Added `RandScore` metric to cluster package ([#2025](https://github.com/Lightning-AI/torchmetrics/pull/2025)
- Added `RandScore` metric to cluster package ([#2025](https://github.com/Lightning-AI/torchmetrics/pull/2025))


- Added `NormalizedMutualInfoScore` metric to cluster package ([#2029](https://github.com/Lightning-AI/torchmetrics/pull/2029)
- Added `CalinskiHarabaszScore` metric to cluster package ([#2036](https://github.com/Lightning-AI/torchmetrics/pull/2036))


- Added `NormalizedMutualInfoScore` metric to cluster package ([#2029](https://github.com/Lightning-AI/torchmetrics/pull/2029))



### Changed
Expand Down
21 changes: 21 additions & 0 deletions docs/source/clustering/calinski_harabasz_score.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
.. customcarditem::
:header: Calinski Harabasz Score
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/default.svg
:tags: Clustering

.. include:: ../links.rst

#######################
Calinski Harabasz Score
#######################

Module Interface
________________

.. autoclass:: torchmetrics.clustering.CalinskiHarabaszScore
:exclude-members: update, compute

Functional Interface
____________________

.. autofunction:: torchmetrics.functional.clustering.calinski_harabasz_score
2 changes: 1 addition & 1 deletion docs/source/clustering/mutual_info_score.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
.. customcarditem::
:header: Mutual Information Score
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/clustering.svg
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/default.svg
:tags: Clustering

.. include:: ../links.rst
Expand Down
2 changes: 1 addition & 1 deletion docs/source/clustering/normalized_mutual_info_score.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
.. customcarditem::
:header: Normalized Mutual Information Score
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/clustering.svg
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/default.svg
:tags: Clustering

.. include:: ../links.rst
Expand Down
2 changes: 1 addition & 1 deletion docs/source/clustering/rand_score.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
.. customcarditem::
:header: Rand Score
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/clustering.svg
:image: https://pl-flash-data.s3.amazonaws.com/assets/thumbnails/default.svg
:tags: Clustering

.. include:: ../links.rst
Expand Down
2 changes: 2 additions & 0 deletions src/torchmetrics/clustering/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torchmetrics.clustering.calinski_harabasz_score import CalinskiHarabaszScore
from torchmetrics.clustering.mutual_info_score import MutualInfoScore
from torchmetrics.clustering.normalized_mutual_info_score import NormalizedMutualInfoScore
from torchmetrics.clustering.rand_score import RandScore

__all__ = [
"CalinskiHarabaszScore",
"MutualInfoScore",
"NormalizedMutualInfoScore",
"RandScore",
Expand Down
126 changes: 126 additions & 0 deletions src/torchmetrics/clustering/calinski_harabasz_score.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Sequence, Union

from torch import Tensor

from torchmetrics.functional.clustering.calinski_harabasz_score import calinski_harabasz_score
from torchmetrics.metric import Metric
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["CalinskiHarabaszScore.plot"]


class CalinskiHarabaszScore(Metric):
r"""Compute Calinski Harabasz Score (also known as variance ratio criterion) for clustering algorithms.
.. math::
CHS(X, L) = \frac{B(X, L) \cdot (n_\text{samples} - n_\text{labels})}{W(X, L) \cdot (n_\text{labels} - 1)}
where :math:`B(X, L)` is the between-cluster dispersion, which is the squared distance between the cluster centers
and the dataset mean, weighted by the size of the clusters, :math:`n_\text{samples}` is the number of samples,
:math:`n_\text{labels}` is the number of labels, and :math:`W(X, L)` is the within-cluster dispersion e.g. the
sum of squared distances between each samples and its closest cluster center.
This clustering metric is an intrinsic measure, because it does not rely on ground truth labels for the evaluation.
Instead it examines how well the clusters are separated from each other. The score is higher when clusters are dense
and well separated, which relates to a standard concept of a cluster.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``data`` (:class:`~torch.Tensor`): float tensor with shape ``(N,d)`` with the embedded data. ``d`` is the
dimensionality of the embedding space.
- ``labels`` (:class:`~torch.Tensor`): single integer tensor with shape ``(N,)`` with cluster labels
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``chs`` (:class:`~torch.Tensor`): A tensor with the Calinski Harabasz Score
Args:
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> import torch
>>> from torchmetrics.clustering import CalinskiHarabaszScore
>>> _ = torch.manual_seed(42)
>>> data = torch.randn(10, 3)
>>> labels = torch.randint(3, (10,))
>>> metric = CalinskiHarabaszScore()
>>> metric(data, labels)
tensor(3.0053)
"""
is_differentiable: bool = True
higher_is_better: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
data: List[Tensor]
labels: List[Tensor]

def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)

self.add_state("data", default=[], dist_reduce_fx="cat")
self.add_state("labels", default=[], dist_reduce_fx="cat")

def update(self, data: Tensor, labels: Tensor) -> None:
"""Update metric state with new data and labels."""
self.data.append(data)
self.labels.append(labels)

def compute(self) -> Tensor:
"""Compute the Calinski Harabasz Score over all data and labels."""
return calinski_harabasz_score(dim_zero_cat(self.data), dim_zero_cat(self.labels))

def plot(self, val: Union[Tensor, Sequence[Tensor], None] = None, ax: Optional[_AX_TYPE] = None) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.clustering import RandScore
>>> metric = RandScore()
>>> metric.update(torch.randint(0, 4, (10,)), torch.randint(0, 4, (10,)))
>>> fig_, ax_ = metric.plot(metric.compute())
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.clustering import RandScore
>>> metric = RandScore()
>>> for _ in range(10):
... metric.update(torch.randint(0, 4, (10,)), torch.randint(0, 4, (10,)))
>>> fig_, ax_ = metric.plot(metric.compute())
"""
return self._plot(val, ax)
2 changes: 1 addition & 1 deletion src/torchmetrics/detection/giou.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@ def plot(
... ]
>>> target = lambda : [
... {
... "boxes": torch.tensor([[300.00, 100.00, 315.00, 150.00]]) + torch.randint(-10, 10, (1, 4)),
... "boxes": torch.tensor([[300.00, 100.00, 335.00, 150.00]]) + torch.randint(-10, 10, (1, 4)),
... "labels": torch.tensor([5]),
... }
... ]
Expand Down
2 changes: 2 additions & 0 deletions src/torchmetrics/functional/clustering/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torchmetrics.functional.clustering.calinski_harabasz_score import calinski_harabasz_score
from torchmetrics.functional.clustering.mutual_info_score import mutual_info_score
from torchmetrics.functional.clustering.normalized_mutual_info_score import normalized_mutual_info_score
from torchmetrics.functional.clustering.rand_score import rand_score

__all__ = [
"calinski_harabasz_score",
"mutual_info_score",
"normalized_mutual_info_score",
"rand_score",
Expand Down
73 changes: 73 additions & 0 deletions src/torchmetrics/functional/clustering/calinski_harabasz_score.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import Tensor


def _calinski_harabasz_score_validate_input(data: Tensor, labels: Tensor) -> None:
"""Validate that the input data and labels have correct shape and type."""
if data.ndim != 2:
raise ValueError(f"Expected 2D data, got {data.ndim}D data instead")
if not data.is_floating_point():
raise ValueError(f"Expected floating point data, got {data.dtype} data instead")
if labels.ndim != 1:
raise ValueError(f"Expected 1D labels, got {labels.ndim}D labels instead")


def calinski_harabasz_score(data: Tensor, labels: Tensor) -> Tensor:
"""Compute the Calinski Harabasz Score (also known as variance ratio criterion) for clustering algorithms.
Args:
data: float tensor with shape ``(N,d)`` with the embedded data.
labels: single integer tensor with shape ``(N,)`` with cluster labels
Returns:
Scalar tensor with the Calinski Harabasz Score
Example:
>>> import torch
>>> from torchmetrics.functional.clustering import calinski_harabasz_score
>>> _ = torch.manual_seed(42)
>>> data = torch.randn(10, 3)
>>> labels = torch.randint(0, 2, (10,))
>>> calinski_harabasz_score(data, labels)
tensor(3.4998)
"""
_calinski_harabasz_score_validate_input(data, labels)

# convert to zero indexed labels
unique_labels, labels = torch.unique(labels, return_inverse=True)
n_labels = len(unique_labels)

n_samples = data.shape[0]

if not 1 < n_labels < n_samples:
raise ValueError(
"Number of detected clusters must be greater than one and less than the number of samples."
f"Got {n_labels} clusters and {n_samples} samples."
)

mean = data.mean(dim=0)
between_cluster_dispersion = torch.tensor(0.0, device=data.device)
within_cluster_dispersion = torch.tensor(0.0, device=data.device)
for k in range(n_labels):
cluster_k = data[labels == k, :]
mean_k = cluster_k.mean(dim=0)
between_cluster_dispersion += ((mean_k - mean) ** 2).sum() * cluster_k.shape[0]
within_cluster_dispersion += ((cluster_k - mean_k) ** 2).sum()

if within_cluster_dispersion == 0:
return torch.tensor(1.0, device=data.device, dtype=torch.float32)
return between_cluster_dispersion * (n_samples - n_labels) / (within_cluster_dispersion * (n_labels - 1.0))
56 changes: 56 additions & 0 deletions tests/unittests/clustering/test_calinski_harabasz_score.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from sklearn.metrics import calinski_harabasz_score as sklearn_calinski_harabasz_score
from torchmetrics.clustering.calinski_harabasz_score import CalinskiHarabaszScore
from torchmetrics.functional.clustering.calinski_harabasz_score import calinski_harabasz_score

from unittests.clustering.inputs import _single_target_intrinsic1, _single_target_intrinsic2
from unittests.helpers import seed_all
from unittests.helpers.testers import MetricTester

seed_all(42)


@pytest.mark.parametrize(
"preds, target",
[
(_single_target_intrinsic1.preds, _single_target_intrinsic1.target),
(_single_target_intrinsic2.preds, _single_target_intrinsic2.target),
],
)
class TestCalinskiHarabaszScore(MetricTester):
"""Test class for `CalinskiHarabaszScore` metric."""

atol = 1e-5

@pytest.mark.parametrize("ddp", [True, False])
def test_calinski_harabasz_score(self, preds, target, ddp):
"""Test class implementation of metric."""
self.run_class_metric_test(
ddp=ddp,
preds=preds,
target=target,
metric_class=CalinskiHarabaszScore,
reference_metric=sklearn_calinski_harabasz_score,
)

def test_calinski_harabasz_score_functional(self, preds, target):
"""Test functional implementation of metric."""
self.run_functional_metric_test(
preds=preds,
target=target,
metric_functional=calinski_harabasz_score,
reference_metric=sklearn_calinski_harabasz_score,
)
2 changes: 2 additions & 0 deletions tests/unittests/image/test_perceptual_path_length.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,7 @@ def num_classes(self):
),
],
)
@skip_on_running_out_of_memory()
def test_raises_error_on_wrong_generator(generator, errortype, match):
"""Test that appropriate errors are raised on wrong generator."""
with pytest.raises(errortype, match=match):
Expand All @@ -176,6 +177,7 @@ def test_raises_error_on_wrong_generator(generator, errortype, match):

@pytest.mark.skipif(not _TORCH_FIDELITY_AVAILABLE, reason="test requires torch_fidelity")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@skip_on_running_out_of_memory()
def test_compare():
"""Test against torch_fidelity.
Expand Down
3 changes: 2 additions & 1 deletion tests/unittests/utilities/test_plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@
MultilabelROC,
MultilabelSpecificity,
)
from torchmetrics.clustering import MutualInfoScore, NormalizedMutualInfoScore, RandScore
from torchmetrics.clustering import CalinskiHarabaszScore, MutualInfoScore, NormalizedMutualInfoScore, RandScore
from torchmetrics.detection import PanopticQuality
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from torchmetrics.functional.audio import scale_invariant_signal_noise_ratio
Expand Down Expand Up @@ -617,6 +617,7 @@
pytest.param(TranslationEditRate, _text_input_3, _text_input_4, id="translation edit rate"),
pytest.param(MutualInfoScore, _nominal_input, _nominal_input, id="mutual info score"),
pytest.param(RandScore, _nominal_input, _nominal_input, id="rand score"),
pytest.param(CalinskiHarabaszScore, lambda: torch.randn(100, 3), _nominal_input, id="calinski harabasz score"),
pytest.param(NormalizedMutualInfoScore, _nominal_input, _nominal_input, id="normalized mutual info score"),
],
)
Expand Down

0 comments on commit b10cc2f

Please sign in to comment.