Skip to content

Commit

Permalink
Merge 'origin/master' into hipblas
Browse files Browse the repository at this point in the history
  • Loading branch information
SlyEcho committed Jun 19, 2023
2 parents 67e229b + 20568fe commit 5dd2fbe
Show file tree
Hide file tree
Showing 12 changed files with 1,281 additions and 259 deletions.
18 changes: 16 additions & 2 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@ set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels")
option(LLAMA_CUDA_DMMV_F16 "llama: use 16 bit floats for dmmv CUDA kernels" OFF)
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
Expand Down Expand Up @@ -239,6 +240,9 @@ if (LLAMA_CUBLAS)
add_compile_definitions(GGML_USE_CUBLAS)
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y})
if (LLAMA_CUDA_DMMV_F16)
add_compile_definitions(GGML_CUDA_DMMV_F16)
endif()
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})

if (LLAMA_STATIC)
Expand Down Expand Up @@ -497,6 +501,7 @@ add_library(ggml_static STATIC $<TARGET_OBJECTS:ggml>)
if (BUILD_SHARED_LIBS)
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
add_library(ggml_shared SHARED $<TARGET_OBJECTS:ggml>)
target_link_libraries(ggml_shared PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
endif()

add_library(llama
Expand All @@ -522,9 +527,18 @@ endif()

if (GGML_SOURCES_CUDA)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES "native")
set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES OFF)

set_property(TARGET ggml_static PROPERTY CUDA_ARCHITECTURES "native")
set_property(TARGET ggml_static PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")

if (BUILD_SHARED_LIBS)
set_property(TARGET ggml_shared PROPERTY CUDA_ARCHITECTURES "native")
set_property(TARGET ggml_shared PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()

set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES "native")
endif()


Expand Down
5 changes: 4 additions & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -169,6 +169,9 @@ ifdef LLAMA_CUDA_DMMV_Y
else
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1
endif # LLAMA_CUDA_DMMV_Y
ifdef LLAMA_CUDA_DMMV_F16
NVCCFLAGS += -DGGML_CUDA_DMMV_F16
endif # LLAMA_CUDA_DMMV_F16
ifdef LLAMA_CUDA_KQUANTS_ITER
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
else
Expand Down Expand Up @@ -270,7 +273,7 @@ $(info )
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@

llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
$(CXX) $(CXXFLAGS) -c $< -o $@

common.o: examples/common.cpp examples/common.h
Expand Down
16 changes: 14 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -337,7 +337,14 @@ Building the program with BLAS support may lead to some performance improvements
cmake --build . --config Release
```
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_DMMV_Y | Positive integer | 1 | Block size in y direction for the CUDA dequantization + mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_DMMV_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value 2 1 can improve performance for slow GPUs. |
- #### CLBlast
Expand Down Expand Up @@ -617,7 +624,12 @@ And after 4.45 hours, you will have the final perplexity.
#### Building the Project using Android NDK
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).
First, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
First, install the essential packages for termux:
```
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
```
$ mkdir build-android
$ cd build-android
Expand Down
6 changes: 4 additions & 2 deletions examples/metal/metal.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,10 @@ int main(int argc, char ** argv) {
// this allocates all Metal resources and memory buffers
auto * ctx_metal = ggml_metal_init();

ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data));
ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval));
const size_t max_size_data = ggml_get_max_tensor_size(ctx_data);
const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval);
ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data), max_size_data);
ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval), max_size_eval);

// main
{
Expand Down
13 changes: 11 additions & 2 deletions examples/server/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ Command line options:
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
- `--port`: Set the port to listen. Default: `8080`.
- `--embedding`: Enable embedding extraction, Default: disabled.

## Build

Expand Down Expand Up @@ -119,14 +120,14 @@ node .

`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).

`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. (default: 128, -1 = infinity).
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: 128, -1 = infinity).

`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.

`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.

`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate.
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. A space is inserted in the front like main.cpp does.

`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
Expand Down Expand Up @@ -163,6 +164,14 @@ node .

`content`: Set the text to tokenize.

Note that the special `BOS` token is not added in fron of the text and also a space character is not inserted automatically as it is for `/completion`.

- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.

*Options:*

`content`: Set the text to process.

## More examples

### Interactive mode
Expand Down
44 changes: 43 additions & 1 deletion examples/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -254,6 +254,11 @@ struct llama_server_context {
n_past += n_eval;
}

if (params.n_predict == 0) {
has_next_token = false;
return llama_token_eos();
}

// out of user input, sample next token
const float temp = params.temp;
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
Expand Down Expand Up @@ -419,6 +424,19 @@ struct llama_server_context {

return token_text;
}

std::vector<float> getEmbedding() {
static const int n_embd = llama_n_embd(ctx);
if (!params.embedding) {
LOG_WARNING("embedding disabled", {
{ "params.embedding", params.embedding },
});
return std::vector<float>(n_embd, 0.0f);
}
const float * data = llama_get_embeddings(ctx);
std::vector<float> embedding(data, data + n_embd);
return embedding;
}
};

static void server_print_usage(const char * argv0, const gpt_params & params,
Expand Down Expand Up @@ -457,6 +475,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params,
fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
fprintf(stderr, "\n");
}

Expand Down Expand Up @@ -603,6 +622,8 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--embedding") {
params.embedding = true;
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
Expand Down Expand Up @@ -646,6 +667,12 @@ static json format_generation_settings(llama_server_context & llama) {
};
}

static json format_embedding_response(llama_server_context & llama) {
return json {
{ "embedding", llama.getEmbedding() },
};
}

static json format_final_response(llama_server_context & llama, const std::string & content) {
return json {
{ "content", content },
Expand Down Expand Up @@ -881,12 +908,27 @@ int main(int argc, char ** argv) {

svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
const json body = json::parse(req.body);
const std::string content = body["content"].get<std::string>();
const std::string content = body.value("content", "");
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json");
});

svr.Post("/embedding", [&llama](const Request & req, Response & res) {
const json body = json::parse(req.body);

llama.rewind();
llama_reset_timings(llama.ctx);
llama.params.prompt = body.value("content", "");
llama.params.n_predict = 0;
llama.loadPrompt();
llama.beginCompletion();
llama.doCompletion();

const json data = format_embedding_response(llama);
return res.set_content(data.dump(), "application/json");
});

svr.set_logger(log_server_request);

svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
Expand Down
Loading

0 comments on commit 5dd2fbe

Please sign in to comment.