Skip to content

LynnHo/HD-CelebA-Cropper

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HD CelebA Cropper

CelebA dataset provides an aligned set img_align_celeba.zip. However, the size of each aligned image is 218x178, so the faces cropped from such images would be even smaller!

Here we provide a code to obtain higher resolution face images, by cropping the faces from the original unaligned images via 68 landmarks.

We also use a deep image quality assessment method to evaluate and rank the cropped image quality in scores.txt, lower score the better.

Cropped Faces (512x512)

Notice: There are still some low resolution cropped faces since the corresponding original images are low resolution.

Usage

  • Prerequisites

    • OpenCV

    • Python 3.6

  • Dataset

    • CelebA-unaligned (10.2GB, higher quality than the aligned data)

      • download the dataset

      • unzip the data

        7z x ./data/img_celeba.7z/img_celeba.7z.001 -o./data/
        
        unzip ./data/annotations.zip -d ./data/
  • Cropping Examples

    • 512x512 + lanczos4 + jpg

      python align.py --crop_size_h 512 --crop_size_w 512 --order 4 --save_format jpg --n_worker 32

    • 512x512 + lanczos4 + png + larger face in the image (by setting face_factor, default is 0.45)

      python align.py --crop_size_h 512 --crop_size_w 512 --order 4 --save_format png --face_factor 0.6 --n_worker 32

    • 384x384 + bicubic + jpg + smaller face in the image (by setting face_factor, default is 0.45)

      python align.py --crop_size_h 384 --crop_size_w 384 --order 3 --save_format jpg --face_factor 0.3 --n_worker 32

  • Notice

    • order

      • 0: INTER_NEAREST

      • 1: INTER_LINEAR

      • 2: INTER_AREA

      • 3: INTER_CUBIC

      • 4: INTER_LANCZOS4

      • 5: INTER_LANCZOS4