Skip to content

MLWave/Online-Random-Bit-Regression-FTRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Randomly Follow the Regularized Leader

This is a class containing a binary classifier for online machine learning. It employs approaches based on Random Bits Regression and the FTRL-Proximal algorithm

rftrl.RandomLeaderClassifier(alpha=0.1, beta=1., l1=0., l2=1., nr_projections=10000, max_projections=0, subsample_projections=1., size_projections=3, random_state=0, verbose=0)

Parameters

Parameter Description
alpha. Float. Learning Rate. Default = 0.1
beta. Float. Smoothing parameter for adaptive learning rate. Default = 1.
l1. Float. L1 Regularization. Default = 0.1
l2. Float. L2 Regularization. Default = 1.0
nr_projections. Int. Number of random linear projections to create. Default = 10000
max_projections. Int. Not implemented.
subsample_projections. Float. Uses subsampling when making a first pass to create the random thresholds. This is more memory friendly for larger datasets. Default = 1.
size_projections. Int. Number of (feature_value * random_weight) to use in the random linear functions. Default = 3
random_state. Int. Seed for replication. Default = 0
Verbose. Int. Verbosity of classifier. Default = 0

Usage

clf = rftrl.RandomLeaderClassifier(nr_projections=50000, random_state=1, size_projections=3)
  
# Project data
clf.project(X_train)
  
# Train
loss = 0
for e, (x,y) in enumerate(zip(X_train,y)):
  clf.fit(x,e,y)
  pred = clf.predict()
  loss += clf.logloss()
  clf.update(pred)
  
# Test
y = 1 # Dummy label
for e, x in enumerate(X_test):
  clf.fit(x,e,y)
  pred = clf.predict()
  print("%s,%s"%(e,pred))

References

Random Bit Regression (RBR).
Random Bits Regression: a Strong General Predictor for Big Data
Yi Wang, Yi Li, Momiao Xiong, Li Jin

http://arxiv.org/abs/1501.02990

Follow the Regularized Leader (FTRL)
Ad Click prediction: A view from the trenches.
H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy Kubica.

https://research.google.com/pubs/archive/41159.pdf

Tinrtgu's Beat the Benchmark online FTRL proximal script's
Beat the benchmark with less then 200MB of memory.

https://www.kaggle.com/c/criteo-display-ad-challenge/forums/t/10322/beat-the-benchmark-with-less-then-200mb-of-memory/53737

https://www.kaggle.com/c/tradeshift-text-classification/forums/t/10537/beat-the-benchmark-with-less-than-400mb-of-memory/

About

Online Random Bit Regression with FTRL-Proximal in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages