pycvcqv
provides some easy-to-use functions to calculate the
Coefficient of Variation (cv
) and Coefficient of Quartile Variation (cqv
)
with confidence intervals provided with all available methods.
pip install pycvcqv
import pandas as pd
from pycvcqv import coefficient_of_variation, cqv
coefficient_of_variation(
data=[
0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4,
4.6, 5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9
],
multiplier=100,
ndigits=2
)
# {'cv': 57.77, 'lower': 41.43, 'upper': 98.38}
cqv(
data=[0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4, 4.6, 5.4, 5.4],
multiplier=100,
)
# 51.7241
data = pd.DataFrame(
{
"col-1": pd.Series([0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5]),
"col-2": pd.Series([5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9]),
}
)
coefficient_of_variation(data=data, num_threads=3)
# columns cv lower upper
# 0 col-1 0.6076 0.3770 1.6667
# 1 col-2 0.1359 0.0913 0.2651
cqv(data=data, num_threads=-1)
# columns cqv
# 0 col-1 0.3889
# 1 col-2 0.0732
This project was generated with python-package-template