Skip to content

MaaniBeigy/pycvcqv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pycvcqv

PyPI Python Version Build status coverage report Downloads "Buy Me A Coffee" static analysis dependencies vulnerabilities maintainability complexity lint report docstring Code style: black Security: bandit Pre-commit License

Find homogeneity with confidence.

Python port of cvcqv

Introduction

pycvcqv provides some easy-to-use functions to calculate the Coefficient of Variation (cv) and Coefficient of Quartile Variation (cqv) with confidence intervals provided with all available methods.

Install

pip install pycvcqv

Usage

import pandas as pd
from pycvcqv import coefficient_of_variation, cqv

coefficient_of_variation(
    data=[
        0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4,
        4.6, 5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9
    ],
    multiplier=100,
    ndigits=2
)
# {'cv': 57.77, 'lower': 41.43, 'upper': 98.38}
cqv(
    data=[0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5, 4.4, 4.6, 5.4, 5.4],
    multiplier=100,
)
# 51.7241
data = pd.DataFrame(
    {
        "col-1": pd.Series([0.2, 0.5, 1.1, 1.4, 1.8, 2.3, 2.5, 2.7, 3.5]),
        "col-2": pd.Series([5.4, 5.4, 5.7, 5.8, 5.9, 6.0, 6.6, 7.1, 7.9]),
    }
)
coefficient_of_variation(data=data, num_threads=3)
#   columns      cv      lower      upper
# 0   col-1  0.6076     0.3770     1.6667
# 1   col-2  0.1359     0.0913     0.2651
cqv(data=data, num_threads=-1)
#   columns      cqv
# 0   col-1  0.3889
# 1   col-2  0.0732

Credits

🚀 Your next Python package needs a bleeding-edge project structure. This project was generated with python-package-template