This repository contains measures for evaluating salient object detection models in python.
- E-measure
- S-measure
- Weighted F-measure
- Adaptive F-measure or F-measure
- MAE
- PR curve
- F-measure curve (different thresholds)
Simply import calculate_measures
, set Saliency Maps and Ground Truth paths, and choose measures you would like to be calculated (measures: 'MAE', 'E-measure', 'S-measure', 'Max-F', 'Adp-F', 'Wgt-F'
). All results can be saved as numpy arrays by specifying save
parameter.
>>> from saliency_toolbox import calculate_measures
>>> sm_dir = 'SM/'
>>> gt_dir = 'GT/'
>>> res = calculate_measures(gt_dir, sm_dir, ['E-measure', 'S-measure', 'Wgt-F'], save=False)
>>> print(res)
{'E-measure': 0.990753, 'S-measure': 0.958684, 'Wgt-F': 0.974209}
To plot F-measure and Precision-Recall curves, firstly, Max-F
should be calculated and stored (by specifying save
). This results in storing Precision.npy
, Recall.npy
and Fmeasure_all_thresholds.npy
, and then we can use them to plot curves. For example:
>>> res = calculate_measures(gt_dir, sm_dir, ['Max-F'], save='./')
>>> prec = np.load('save/Precision.npy')
>>> recall = np.load('save/Recall.npy')
>>> f_measure = np.load('save/Fmeasure_all_thresholds.npy')
>>> plt.plot(recall, prec)
>>> plt.figure()
>>> plt.plot(np.linspace(0, 1, len(f_measure)), f_measure)
@article{mohammadi2020cagnet,
title={CAGNet: Content-Aware Guidance for Salient Object Detection},
author={Mohammadi, Sina and Noori, Mehrdad and Bahri, Ali and Majelan, Sina Ghofrani and Havaei, Mohammad},
journal={Pattern Recognition},
pages={107303},
year={2020},
publisher={Elsevier}
}
@article{noori2020dfnet,
title={DFNet: Discriminative feature extraction and integration network for salient object detection},
author={Noori, Mehrdad and Mohammadi, Sina and Majelan, Sina Ghofrani and Bahri, Ali and Havaei, Mohammad},
journal={Engineering Applications of Artificial Intelligence},
volume={89},
pages={103419},
year={2020},
publisher={Elsevier}
}