- First import the library that we need
import cv2
import mediapipe as mp
- Make the program to connect to the webcam
import cv2
import numpy as numpy
cap = cv2.VideoCapture(0)
while True:
_, frame = cap.read()
cv2.imshow('Face Mesh', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
- Load the module of face_mesh and drawing_utils
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
- Determine the minimum percentage
with mp_face_mesh.FaceMesh(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
- Chanfe BGR to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- To optimize the program change writeable to False
image.flags.writeable = False
- processing
results = hands.process(image)
- Change RGB to BGR
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
- Make a loop and draw the landmark
drawing_spec = mp_drawing.DrawingSpec(color=(0,251,251),thickness=1, circle_radius=1)
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(image,face_landmarks,mp_face_mesh.FACE_CONNECTIONS,drawing_spec,drawing_spec)