Skip to content

Official implementation of "FACE-AUDITOR: Data Auditing in Facial Recognition Systems" (USENIX Security 2023)

Notifications You must be signed in to change notification settings

MinChen00/Face-Auditor

Repository files navigation

Introduction

This repo contains the implementation of Face-Auditor, which aims to evaluate the privacy leakage in the state-of-the-art few-shot learning pipeline.

Code Strcuture

.
├── config.py
├── exp
├── lib_classifer
├── lib_dataset
├── lib_metrics
├── lib_model
├── main.py
├── parameter_parser.py
└── README.md

Environment Prepare

conda create --name face_auditor python=3.6.10
conda activate face_auditor
pip install numpy pandas seaborn matplotlib sklearn MulticoreTSNE cython facenet_pytorch deepface opacus psutil GPUtil
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

Dataset Prepare

The corresponding file for downloading the datasets is in lib_dataset/datasets/. In our paper, we mainly focus on four open-source human face image datasets, they are:

  • UMDFaces
  • WebFace
  • VGGFace2
  • CelebA

Other datasets should also work with our Face-Auditor.

Evaluations

In the following, we give some examples of the experimental configurations, see more details in parameter_parser.py.

Training Shadow and Target Models

exp='class_mem_infer_meta'

python main.py --exp $exp --is_train_target true --is_train_shadow true

Constructing the Probing Set

shot=5
way=5
probe_num_task=100
probe_num_query=5

python main.py --is_generate_probe true --probe_ways $way --probe_shot $shot --probe_num_task $probe_num_task --probe_num_query $probe_num_query 

Reference Information related Configurations

## probe controlling parameters ##
python main.py --is_similarity_aided true --is_use_image_similarity true --image_similarity_name cosine

On the Robustness of FACE-AUDITOR


## adv (input) defense parameters ##
python main.py --is_adv_defense true

## dp (training) defense parameters ##
python main.py --is_dp_defense true

## noise (output) defense parameters ##
python main.py --is_noise_defense true

## memguard (adaptive) defense parameters ##
python main.py --is_memguard_defense true

About

Official implementation of "FACE-AUDITOR: Data Auditing in Facial Recognition Systems" (USENIX Security 2023)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages