Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updates MLIR-TRT to 0.1.36 #356

Merged
merged 1 commit into from
Nov 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions tripy/pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,8 @@ requires-python = ">= 3.9"
license = {text = "Apache 2.0"}
dependencies = [
"tensorrt~=10.0",
"mlir-tensorrt-compiler==0.1.34+cuda12.trt102",
"mlir-tensorrt-runtime==0.1.34+cuda12.trt102",
"mlir-tensorrt-compiler==0.1.36+cuda12.trt102",
"mlir-tensorrt-runtime==0.1.36+cuda12.trt102",
"colored==2.2.3",
]

Expand Down
4 changes: 1 addition & 3 deletions tripy/tests/integration/test_iota.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,9 +91,7 @@ def test_negative_no_casting(self, dtype):
a = tp.ones((2, 2))
out = Iota.build([frontend_utils.tensor_from_shape_like(a.shape)], dim=0, output_rank=2, dtype=dtype)

exception_str = "error: 'tensorrt.linspace' op result #0 must be 0D/1D/2D/3D/4D/5D/6D/7D/8D tensor of 32-bit float or 32-bit signless integer values"
if dtype == tp.bool:
exception_str = "InternalError: failed to run compilation"
exception_str = "InternalError: failed to run compilation"
with helper.raises(
tp.TripyException,
match=exception_str,
Expand Down
3 changes: 2 additions & 1 deletion tripy/tests/integration/test_quantize.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
import tripy as tp
from tests.helper import raises, TORCH_DTYPES
from tests.conftest import skip_if_older_than_sm80, skip_if_older_than_sm89
import cupy as cp


class TestQuantize:
Expand Down Expand Up @@ -118,4 +119,4 @@ def test_non_constant_scale(self):
scale = tp.ones((4,))
quantized = tp.quantize(input, scale, tp.int8, dim=0)

assert bool(tp.all(quantized == tp.ones((4, 4), dtype=tp.int8)))
assert bool(cp.all(cp.from_dlpack(quantized) == cp.ones((4, 4), dtype=cp.int8)))
8 changes: 4 additions & 4 deletions tripy/tripy/frontend/ops/tensor_initializers.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ def zeros_like(input: "tripy.Tensor", dtype: Optional[datatype.dtype] = None) ->
@constraints.dtypes(
constraints={"tensor": "T1", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "int32", "bool"],
"T1": ["float32", "float16", "bfloat16", "int32", "int64", "bool"],
},
)
def tril(tensor: "tripy.Tensor", diagonal: int = 0) -> "tripy.Tensor":
Expand Down Expand Up @@ -223,7 +223,7 @@ def tril(tensor: "tripy.Tensor", diagonal: int = 0) -> "tripy.Tensor":
@constraints.dtypes(
constraints={"tensor": "T1", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "int32", "bool"],
"T1": ["float32", "float16", "bfloat16", "int32", "int64", "bool"],
},
)
def triu(tensor: "tripy.Tensor", diagonal: int = 0) -> "tripy.Tensor":
Expand Down Expand Up @@ -281,7 +281,7 @@ def triu(tensor: "tripy.Tensor", diagonal: int = 0) -> "tripy.Tensor":
@constraints.dtypes(
constraints={"dtype": "T1", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "bool"],
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64", "bool"],
},
)
def arange(
Expand Down Expand Up @@ -346,7 +346,7 @@ def arange(
@constraints.dtypes(
constraints={"dtype": "T1", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "bool"],
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64", "bool"],
},
)
def arange(
Expand Down
2 changes: 1 addition & 1 deletion tripy/tripy/frontend/trace/ops/flip.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ def to_flat_ir(self, inputs, outputs):
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "int32", "bool"],
"T1": ["float32", "float16", "bfloat16", "int32", "int64", "bool"],
},
)
def flip(input: "tripy.Tensor", dims: Optional[Union[int, Sequence[int]]] = None) -> "tripy.Tensor":
Expand Down
2 changes: 1 addition & 1 deletion tripy/tripy/frontend/trace/ops/gather.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def to_flat_ir(self, inputs, outputs):
@constraints.dtypes(
constraints={"input": "T1", "index": "T2", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "int8", "int32", "bool"],
"T1": ["float8", "float32", "float16", "bfloat16", "int4", "int8", "int32", "int64", "bool"],
"T2": ["int32"],
},
)
Expand Down
4 changes: 2 additions & 2 deletions tripy/tripy/frontend/trace/ops/iota.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def iota_impl(shape: "tripy.Tensor", dim: int, dtype: datatype.dtype, output_ran
@constraints.dtypes(
constraints={"dtype": "T1", constraints.RETURN_VALUE: "T1"},
variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "bool"],
"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
},
)
def iota(shape: ShapeLike, dim: int = 0, dtype: datatype.dtype = datatype.float32) -> "tripy.Tensor":
Expand Down Expand Up @@ -101,7 +101,7 @@ def iota(shape: ShapeLike, dim: int = 0, dtype: datatype.dtype = datatype.float3
constraints={"input": "T1", "dtype": "T2", constraints.RETURN_VALUE: "T2"},
variables={
"T1": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
"T2": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "bool"],
"T2": ["float32", "float16", "bfloat16", "float8", "int4", "int8", "int32", "int64", "bool"],
},
)
def iota_like(input: "tripy.Tensor", dim: int = 0, dtype: Optional[datatype.dtype] = None) -> "tripy.Tensor":
Expand Down
12 changes: 6 additions & 6 deletions tripy/tripy/frontend/trace/ops/reduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ def _reduce_impl(input: "tripy.Tensor", kind: Reduce.Kind, dim: Union[int, Seque
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T1"},
variables={"T1": ["float32", "int32", "float16", "bfloat16"]},
variables={"T1": ["float32", "int32", "int64", "float16", "bfloat16"]},
)
def sum(
input: "tripy.Tensor", dim: Optional[Union[int, Sequence[int]]] = None, keepdim: bool = False
Expand Down Expand Up @@ -232,7 +232,7 @@ def any(
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T1"},
variables={"T1": ["float32", "int32", "float16", "bfloat16"]},
variables={"T1": ["float32", "int32", "int64", "float16", "bfloat16"]},
)
def max(
input: "tripy.Tensor", dim: Optional[Union[int, Sequence[int]]] = None, keepdim: bool = False
Expand Down Expand Up @@ -265,7 +265,7 @@ def max(
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T1"},
variables={"T1": ["float32", "int32", "float16", "bfloat16"]},
variables={"T1": ["float32", "int32", "int64", "float16", "bfloat16"]},
)
def prod(
input: "tripy.Tensor", dim: Optional[Union[int, Sequence[int]]] = None, keepdim: bool = False
Expand Down Expand Up @@ -313,7 +313,7 @@ def mean_impl(tensor: "tripy.Tensor", dim: Union[int, Sequence] = None, keepdim:
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T1"},
variables={"T1": ["float32", "int32", "float16", "bfloat16"]},
variables={"T1": ["float32", "int32", "int64", "float16", "bfloat16"]},
)
def mean(
input: "tripy.Tensor", dim: Optional[Union[int, Sequence[int]]] = None, keepdim: bool = False
Expand Down Expand Up @@ -413,7 +413,7 @@ def _arg_min_max_impl(tensor: "tripy.Tensor", kind: ArgMinMax.Kind, dim: Optiona
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T2"},
variables={"T1": ["float32", "float16", "bfloat16", "int32", "bool", "int8"], "T2": ["int32"]},
variables={"T1": ["float32", "float16", "bfloat16", "int32"], "T2": ["int32"]},
)
def argmax(input: "tripy.Tensor", dim: Optional[int] = None, keepdim: bool = False) -> "tripy.Tensor":
"""
Expand Down Expand Up @@ -445,7 +445,7 @@ def argmax(input: "tripy.Tensor", dim: Optional[int] = None, keepdim: bool = Fal
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T2"},
variables={"T1": ["float32", "float16", "bfloat16", "int32", "bool", "int8"], "T2": ["int32"]},
variables={"T1": ["float32", "float16", "bfloat16", "int32"], "T2": ["int32"]},
)
def argmin(input: "tripy.Tensor", dim: Optional[int] = None, keepdim: bool = False) -> "tripy.Tensor":
"""
Expand Down
2 changes: 1 addition & 1 deletion tripy/tripy/frontend/trace/ops/unary_elementwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -252,7 +252,7 @@ def log(input: "tripy.Tensor") -> "tripy.Tensor":
@export.public_api(document_under="operations/functions")
@constraints.dtypes(
constraints={"input": "T1", constraints.RETURN_VALUE: "T1"},
variables={"T1": ["float32", "float16", "bfloat16", "int8", "int32"]},
variables={"T1": ["float32", "float16", "bfloat16", "int8", "int32", "int64"]},
)
def abs(input: "tripy.Tensor") -> "tripy.Tensor":
r"""
Expand Down