Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Accelerate RunningWindow queries on GPU #2600

Merged
merged 11 commits into from
Jun 9, 2021
31 changes: 31 additions & 0 deletions integration_tests/src/main/python/window_function_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -455,3 +455,34 @@ def test_window_aggs_for_rows_collect_list():
(partition by a order by b,c_int rows between CURRENT ROW and UNBOUNDED FOLLOWING) as collect_struct
from window_collect_table
''')


# SortExec does not support array type, so sort the result locally.
@ignore_order(local=True)
def test_running_window_function_exec_for_all_aggs():
assert_gpu_and_cpu_are_equal_sql(
lambda spark : gen_df(spark, _gen_data_for_collect),
"window_collect_table",
'''
select
sum(c_int) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as sum_int,
min(c_long) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as min_long,
max(c_time) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as max_time,
count(1) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as count_1,
count(*) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as count_star,
row_number() over
(partition by a order by b,c_int) as row_num,
collect_list(c_float) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as collect_float,
collect_list(c_decimal) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as collect_decimal,
collect_list(c_struct) over
(partition by a order by b,c_int rows between UNBOUNDED PRECEDING AND CURRENT ROW) as collect_struct
from window_collect_table
''')

Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@ import org.apache.spark.sql.execution.datasources.v2.parquet.ParquetScan
import org.apache.spark.sql.execution.exchange.{ReusedExchangeExec, ShuffleExchangeExec}
import org.apache.spark.sql.execution.joins.{BroadcastHashJoinExec, BroadcastNestedLoopJoinExec, HashJoin, ShuffledHashJoinExec, SortMergeJoinExec}
import org.apache.spark.sql.execution.python.{AggregateInPandasExec, ArrowEvalPythonExec, FlatMapGroupsInPandasExec, MapInPandasExec, WindowInPandasExec}
import org.apache.spark.sql.execution.window.WindowExecBase
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.rapids.{GpuFileSourceScanExec, GpuStringReplace, GpuTimeSub, ShuffleManagerShimBase}
import org.apache.spark.sql.rapids.execution.{GpuBroadcastExchangeExecBase, GpuBroadcastNestedLoopJoinExecBase, GpuShuffleExchangeExecBase}
Expand Down Expand Up @@ -141,6 +142,8 @@ abstract class SparkBaseShims extends SparkShims {
}
}

override def isWindowFunctionExec(plan: SparkPlan): Boolean = plan.isInstanceOf[WindowExecBase]

override def isGpuShuffledHashJoin(plan: SparkPlan): Boolean = {
plan match {
case _: GpuShuffledHashJoinExec => true
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
/*
* Copyright (c) 2021, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.nvidia.spark.rapids.shims.spark301db

import com.databricks.sql.execution.window.RunningWindowFunctionExec
import com.nvidia.spark.rapids.{BaseExprMeta, DataFromReplacementRule, GpuBaseWindowExecMeta, GpuExec, GpuOverrides, GpuWindowExec, RapidsConf, RapidsMeta, SparkPlanMeta}

import org.apache.spark.sql.catalyst.expressions.{Expression, NamedExpression, SortOrder}

/**
* GPU-based window-exec implementation, analogous to RunningWindowFunctionExec.
tgravescs marked this conversation as resolved.
Show resolved Hide resolved
*/
class GpuRunningWindowExecMeta(runningWindowFunctionExec: RunningWindowFunctionExec,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends GpuBaseWindowExecMeta[RunningWindowFunctionExec](runningWindowFunctionExec, conf, parent, rule) {

override def getInputWindowExpressions: Seq[NamedExpression] = runningWindowFunctionExec.windowExpressionList
override def getPartitionSpecs: Seq[Expression] = runningWindowFunctionExec.partitionSpec
override def getOrderSpecs: Seq[SortOrder] = runningWindowFunctionExec.orderSpec
override def getResultColumnsOnly: Boolean = true
}
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

package com.nvidia.spark.rapids.shims.spark301db

import com.databricks.sql.execution.window.RunningWindowFunctionExec
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.shims.spark301.Spark301Shims
import org.apache.hadoop.fs.Path
Expand All @@ -36,6 +37,7 @@ import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
import org.apache.spark.sql.execution.joins.{BroadcastHashJoinExec, BroadcastNestedLoopJoinExec, HashJoin, SortMergeJoinExec}
import org.apache.spark.sql.execution.joins.ShuffledHashJoinExec
import org.apache.spark.sql.execution.python.{AggregateInPandasExec, ArrowEvalPythonExec, FlatMapGroupsInPandasExec, MapInPandasExec, WindowInPandasExec}
import org.apache.spark.sql.execution.window.WindowExecBase
import org.apache.spark.sql.rapids.GpuFileSourceScanExec
import org.apache.spark.sql.rapids.execution.{GpuBroadcastExchangeExecBase, GpuBroadcastNestedLoopJoinExecBase, GpuShuffleExchangeExecBase}
import org.apache.spark.sql.rapids.execution.python.{GpuAggregateInPandasExecMeta, GpuArrowEvalPythonExec, GpuFlatMapGroupsInPandasExecMeta, GpuMapInPandasExecMeta, GpuPythonUDF, GpuWindowInPandasExecMetaBase}
Expand Down Expand Up @@ -75,6 +77,9 @@ class Spark301dbShims extends Spark301Shims {
}
}

override def isWindowFunctionExec(plan: SparkPlan): Boolean =
plan.isInstanceOf[WindowExecBase] || plan.isInstanceOf[RunningWindowFunctionExec]

override def getExecs: Map[Class[_ <: SparkPlan], ExecRule[_ <: SparkPlan]] = {
Seq(
GpuOverrides.exec[WindowInPandasExec](
Expand All @@ -96,6 +101,17 @@ class Spark301dbShims extends Spark301Shims {
)
}
}).disabledByDefault("it only supports row based frame for now"),
GpuOverrides.exec[RunningWindowFunctionExec](
"Databricks-specific window function exec, for \"running\" windows, " +
"i.e. (UNBOUNDED PRECEDING TO CURRENT ROW)",
ExecChecks(
TypeSig.commonCudfTypes + TypeSig.DECIMAL +
TypeSig.STRUCT.nested(TypeSig.commonCudfTypes + TypeSig.DECIMAL) +
TypeSig.ARRAY.nested(TypeSig.commonCudfTypes + TypeSig.DECIMAL + TypeSig.STRUCT
+ TypeSig.ARRAY),
TypeSig.all),
(runningWindowFunctionExec, conf, p, r) => new GpuRunningWindowExecMeta(runningWindowFunctionExec, conf, p, r)
),
GpuOverrides.exec[FileSourceScanExec](
"Reading data from files, often from Hive tables",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.STRUCT + TypeSig.MAP +
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
/*
* Copyright (c) 2021, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package com.nvidia.spark.rapids.shims.spark311db

import com.databricks.sql.execution.window.RunningWindowFunctionExec
import com.nvidia.spark.rapids.{BaseExprMeta, DataFromReplacementRule, GpuBaseWindowExecMeta, GpuExec, GpuOverrides, GpuWindowExec, RapidsConf, RapidsMeta, SparkPlanMeta}

import org.apache.spark.sql.catalyst.expressions.{Expression, NamedExpression, SortOrder}

/**
* GPU-based window-exec implementation, analogous to RunningWindowFunctionExec.
*/
class GpuRunningWindowExecMeta(runningWindowFunctionExec: RunningWindowFunctionExec,
mythrocks marked this conversation as resolved.
Show resolved Hide resolved
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends GpuBaseWindowExecMeta[RunningWindowFunctionExec](runningWindowFunctionExec, conf, parent, rule) {

override def getInputWindowExpressions: Seq[NamedExpression] = runningWindowFunctionExec.windowExpressionList
override def getPartitionSpecs: Seq[Expression] = runningWindowFunctionExec.partitionSpec
override def getOrderSpecs: Seq[SortOrder] = runningWindowFunctionExec.orderSpec
override def getResultColumnsOnly: Boolean = true
}
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

package com.nvidia.spark.rapids.shims.spark311db

import com.databricks.sql.execution.window.RunningWindowFunctionExec
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.shims.spark311.Spark311Shims
import org.apache.hadoop.fs.Path
Expand All @@ -37,6 +38,7 @@ import org.apache.spark.sql.execution.exchange.ShuffleExchangeExec
import org.apache.spark.sql.execution.joins.{BroadcastHashJoinExec, BroadcastNestedLoopJoinExec, HashJoin, SortMergeJoinExec}
import org.apache.spark.sql.execution.joins.ShuffledHashJoinExec
import org.apache.spark.sql.execution.python.{AggregateInPandasExec, ArrowEvalPythonExec, FlatMapGroupsInPandasExec, MapInPandasExec, WindowInPandasExec}
import org.apache.spark.sql.execution.window.WindowExecBase
import org.apache.spark.sql.rapids.GpuFileSourceScanExec
import org.apache.spark.sql.rapids.execution.{GpuBroadcastExchangeExecBase, GpuBroadcastNestedLoopJoinExecBase, GpuShuffleExchangeExecBase}
import org.apache.spark.sql.rapids.execution.python.{GpuPythonUDF, GpuWindowInPandasExecMetaBase}
Expand Down Expand Up @@ -77,6 +79,9 @@ class Spark311dbShims extends Spark311Shims {
}
}

override def isWindowFunctionExec(plan: SparkPlan): Boolean =
plan.isInstanceOf[WindowExecBase] || plan.isInstanceOf[RunningWindowFunctionExec]

override def getExecs: Map[Class[_ <: SparkPlan], ExecRule[_ <: SparkPlan]] = {
Seq(
GpuOverrides.exec[WindowInPandasExec](
Expand All @@ -99,6 +104,17 @@ class Spark311dbShims extends Spark311Shims {
)
}
}).disabledByDefault("it only supports row based frame for now"),
GpuOverrides.exec[RunningWindowFunctionExec](
abellina marked this conversation as resolved.
Show resolved Hide resolved
"Databricks-specific window function exec, for \"running\" windows, " +
"i.e. (UNBOUNDED PRECEDING TO CURRENT ROW)",
ExecChecks(
TypeSig.commonCudfTypes + TypeSig.DECIMAL +
TypeSig.STRUCT.nested(TypeSig.commonCudfTypes + TypeSig.DECIMAL) +
TypeSig.ARRAY.nested(TypeSig.commonCudfTypes + TypeSig.DECIMAL + TypeSig.STRUCT
+ TypeSig.ARRAY),
TypeSig.all),
(runningWindowFunctionExec, conf, p, r) => new GpuRunningWindowExecMeta(runningWindowFunctionExec, conf, p, r)
),
GpuOverrides.exec[FileSourceScanExec](
"Reading data from files, often from Hive tables",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.STRUCT + TypeSig.MAP +
Expand Down
110 changes: 79 additions & 31 deletions sql-plugin/src/main/scala/com/nvidia/spark/rapids/GpuWindowExec.scala
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2020, NVIDIA CORPORATION.
* Copyright (c) 2020-2021, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand All @@ -24,11 +24,82 @@ import org.apache.spark.sql.execution.{SparkPlan, UnaryExecNode}
import org.apache.spark.sql.execution.window.WindowExec
import org.apache.spark.sql.vectorized.ColumnarBatch

class GpuWindowExecMeta(windowExec: WindowExec,
/**
mythrocks marked this conversation as resolved.
Show resolved Hide resolved
* Base class for GPU Execs that implement window functions. This abstracts the method
* by which the window function's input expressions, partition specs, order-by specs, etc.
* are extracted from the specific WindowExecType.
*
* @tparam WindowExecType The Exec class that implements window functions
* (E.g. o.a.s.sql.execution.window.WindowExec.)
*/
abstract class GpuBaseWindowExecMeta[WindowExecType <: SparkPlan] (windowExec: WindowExecType,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends SparkPlanMeta[WindowExec](windowExec, conf, parent, rule) {
extends SparkPlanMeta[WindowExecType](windowExec, conf, parent, rule) {

/**
* Extracts window-expression from WindowExecType.
* The implementation varies, depending on the WindowExecType class.
*/
def getInputWindowExpressions: Seq[NamedExpression]

/**
* Extracts partition-spec from WindowExecType.
* The implementation varies, depending on the WindowExecType class.
*/
def getPartitionSpecs: Seq[Expression]

/**
* Extracts order-by spec from WindowExecType.
* The implementation varies, depending on the WindowExecType class.
*/
def getOrderSpecs: Seq[SortOrder]

/**
* Indicates the output column semantics for the WindowExecType,
* i.e. whether to only return the window-expression result columns (as in some Spark
* distributions) or also include the input columns (as in Apache Spark).
*/
def getResultColumnsOnly: Boolean

val windowExpressions: Seq[BaseExprMeta[NamedExpression]] =
getInputWindowExpressions.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val partitionSpec: Seq[BaseExprMeta[Expression]] =
getPartitionSpecs.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val orderSpec: Seq[BaseExprMeta[SortOrder]] =
getOrderSpecs.map(GpuOverrides.wrapExpr(_, conf, Some(this)))

override def tagPlanForGpu(): Unit = {
// Implementation depends on receiving a `NamedExpression` wrapped WindowExpression.
windowExpressions.map(meta => meta.wrapped)
.filter(expr => !expr.isInstanceOf[NamedExpression])
.foreach(_ => willNotWorkOnGpu(because = "Unexpected query plan with Windowing functions; " +
"cannot convert for GPU execution. " +
"(Detail: WindowExpression not wrapped in `NamedExpression`.)"))
}

override def convertToGpu(): GpuExec = {
GpuWindowExec(
windowExpressions.map(_.convertToGpu()),
partitionSpec.map(_.convertToGpu()),
orderSpec.map(_.convertToGpu().asInstanceOf[SortOrder]),
childPlans.head.convertIfNeeded(),
getResultColumnsOnly
)
}
}

/**
* Specialization of GpuBaseWindowExecMeta for org.apache.spark.sql.window.WindowExec.
* This class implements methods to extract the window-expressions, partition columns,
* order-by columns, etc. from WindowExec.
*/
class GpuWindowExecMeta(windowExec: WindowExec,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends GpuBaseWindowExecMeta[WindowExec](windowExec, conf, parent, rule) {

/**
* Fetches WindowExpressions in input `windowExec`, via reflection.
Expand Down Expand Up @@ -58,35 +129,12 @@ class GpuWindowExecMeta(windowExec: WindowExec,
(expr, resultColumnsOnly)
}

private val (inputWindowExpressions, resultColumnsOnly) = getWindowExpression

val windowExpressions: Seq[BaseExprMeta[NamedExpression]] =
inputWindowExpressions.map(GpuOverrides.wrapExpr(_, conf, Some(this)))

val partitionSpec: Seq[BaseExprMeta[Expression]] =
windowExec.partitionSpec.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val orderSpec: Seq[BaseExprMeta[SortOrder]] =
windowExec.orderSpec.map(GpuOverrides.wrapExpr(_, conf, Some(this)))

override def tagPlanForGpu(): Unit = {
// Implementation depends on receiving a `NamedExpression` wrapped WindowExpression.
windowExpressions.map(meta => meta.wrapped)
.filter(expr => !expr.isInstanceOf[NamedExpression])
.foreach(_ => willNotWorkOnGpu(because = "Unexpected query plan with Windowing functions; " +
"cannot convert for GPU execution. " +
"(Detail: WindowExpression not wrapped in `NamedExpression`.)"))

}
private lazy val (inputWindowExpressions, resultColumnsOnly) = getWindowExpression

override def convertToGpu(): GpuExec = {
GpuWindowExec(
windowExpressions.map(_.convertToGpu()),
partitionSpec.map(_.convertToGpu()),
orderSpec.map(_.convertToGpu().asInstanceOf[SortOrder]),
childPlans.head.convertIfNeeded(),
resultColumnsOnly
)
}
override def getInputWindowExpressions: Seq[NamedExpression] = inputWindowExpressions
override def getPartitionSpecs: Seq[Expression] = windowExec.partitionSpec
override def getOrderSpecs: Seq[SortOrder] = windowExec.orderSpec
override def getResultColumnsOnly: Boolean = resultColumnsOnly
}

case class GpuWindowExec(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -712,7 +712,8 @@ object ExpressionContext {
val parent = findParentPlanMeta(meta)
assert(parent.isDefined, "It is expected that an aggregate function is a child of a SparkPlan")
parent.get.wrapped match {
case _: WindowExecBase => WindowAggExprContext
case agg: SparkPlan if ShimLoader.getSparkShims.isWindowFunctionExec(agg) =>
WindowAggExprContext
case agg: BaseAggregateExec =>
if (agg.groupingExpressions.isEmpty) {
ReductionAggExprContext
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ trait SparkShims {

def isGpuBroadcastHashJoin(plan: SparkPlan): Boolean
def isGpuShuffledHashJoin(plan: SparkPlan): Boolean
def isWindowFunctionExec(plan: SparkPlan): Boolean
def getRapidsShuffleManagerClass: String
def getBuildSide(join: HashJoin): GpuBuildSide
def getBuildSide(join: BroadcastNestedLoopJoinExec): GpuBuildSide
Expand Down